STOR 565 Homework

1. Let P be a probability measure on a set \mathcal{X} . Recall that if A and B are subsets of \mathcal{X} and P(B) > 0, then the conditional probability of A given B is defined by

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Show the following.

- a. If A and B are disjoint then $P(A \cup B | C) = P(A | C) + P(B | C)$
- b. $P(A^c | B) = 1 P(A | B)$
- c. If $A \subseteq B$ then $P(A \mid C) \leq P(B \mid C)$

2. Let \mathcal{X} be a set and let A, B be subsets of \mathcal{X} . Recall that the indicator function of A is defined by

$$\mathbb{I}_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \in A^c \end{cases}$$

- a. Show that $\mathbb{I}_{A^c} = 1 \mathbb{I}_A$.
- b. Show that $\mathbb{I}_A \mathbb{I}_B = \mathbb{I}_{B^c} \mathbb{I}_{A^c}$.
- c. Show that $\mathbb{I}_{A \cap B} = \mathbb{I}_A \mathbb{I}_B$.
- d. Let $u, v \in \{0, 1\}$. Show that $\mathbb{I}(u \neq v) = |\mathbb{I}(u = 1) \mathbb{I}(v = 1)|$. Hint: Consider separately the cases $\mathbb{I}(u \neq v) = 0$ and $\mathbb{I}(u \neq v) = 1$.

3. Let (X, Y) be a jointly distributed pair with $X \in \mathcal{X}$ and $Y \in \{0, 1\}$. Suppose that \mathcal{X} is finite and that (X, Y) has joint probability mass function p(x, y).

- a. Express the prior probabilities $\pi_0 = \mathbb{P}(Y=0)$ and $\pi_1 = \mathbb{P}(Y=1)$ in terms of p(x,y).
- b. Express the class conditional probability mass function $p_0(x) = \mathbb{P}(X = x | Y = 0)$ in terms of p(x, y) and the prior probabilities.
- c. Show that the marginal pmf of X can be written as $p(x) = \pi_0 p_0(x) + \pi_1 p_1(x)$ where $p_1(x) = \mathbb{P}(X = x | Y = 1).$
- e. Use Bayes rule to show that $\eta(x) := P(Y = 1 | X = x) = \pi_1 p_1(x) / p(x)$

4. Let (X, Y) be a discrete random pair with joint probability mass function p(x, y). Recall from the lecture notes that we may define $\mathbb{E}(Y|X) = \varphi(X)$ where $\varphi(x) = \sum_{y} y p(y|x)$. Establish the following.

- a. If $Y \ge 0$ then $\mathbb{E}(Y|X) \ge 0$
- b. $\mathbb{E}(aY+b|X) = a \mathbb{E}(Y|X) + b$
- c. $\mathbb{E}\{\mathbb{E}(Y|X)\} = \mathbb{E}Y$

5. Let X, Y be non-negative random variables with joint density function $f(x, y) = y^{-1} e^{-x/y} e^{-y}$ for $x, y \ge 0$.

- a. Find the marginal density f(y) of Y
- b. Find the conditional density f(x | y) of X given Y = y
- c. Find $\mathbb{E}[X | Y = y]$
- d. Find $\mathbb{E}[X \mid Y]$
- 6. Let **A** and **B** be invertible $n \times n$ matrices. Argue that $(\mathbf{A} \mathbf{B})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$.

7. Let **A** be an $n \times n$ matrix. Show that if **A** has rank *n* then $\mathbf{A}\mathbf{x} = 0$ if and only if $\mathbf{x} = 0$. Hint: If **A** has rank *n* then its columns are linearly independent.

8. Let $A \in \mathbb{R}^{d \times d}$ be symmetric. The spectral theorem tells us that there is an orthonormal basis v_1, \ldots, v_d for \mathbb{R}^d such that each v_i is an eigenvector of A.

- a. Show that the $d \times d$ matrix $\Gamma = [v_1, \ldots, v_d]$ is orthogonal, that is $\Gamma^t \Gamma = I$. Note that this implies $\Gamma \Gamma^t = I$, though you do not need to show this.
- b. Let $D = \text{diag}(\lambda_1, \dots, \lambda_d)$ be the $d \times d$ diagonal matrix with D_{ii} equal to the *i*th eigenvalue of A and all other entries equal to zero. Show that $A\Gamma = \Gamma D$.
- c. Conclude from the expression above that A can be written in the form $A = \Gamma D \Gamma^t$