STOR 565 Homework

1. Let P be a probability measure on a set \mathcal{X}. Recall that if A and B are subsets of \mathcal{X} and $P(B)>0$, then the conditional probability of A given B is defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Show the following.
a. If A and B are disjoint then $P(A \cup B \mid C)=P(A \mid C)+P(B \mid C)$
b. $P\left(A^{c} \mid B\right)=1-P(A \mid B)$
c. If $A \subseteq B$ then $P(A \mid C) \leq P(B \mid C)$
2. Let \mathcal{X} be a set and let A, B be subsets of \mathcal{X}. Recall that the indicator function of A is defined by

$$
\mathbb{I}_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \in A^{c}\end{cases}
$$

a. Show that $\mathbb{I}_{A^{c}}=1-\mathbb{I}_{A}$.
b. Show that $\mathbb{I}_{A}-\mathbb{I}_{B}=\mathbb{I}_{B^{c}}-\mathbb{I}_{A^{c}}$.
c. Show that $\mathbb{I}_{A \cap B}=\mathbb{I}_{A} \mathbb{I}_{B}$.
d. Let $u, v \in\{0,1\}$. Show that $\mathbb{I}(u \neq v)=|\mathbb{I}(u=1)-\mathbb{I}(v=1)|$. Hint: Consider separately the cases $\mathbb{I}(u \neq v)=0$ and $\mathbb{I}(u \neq v)=1$.
3. Let (X, Y) be a jointly distributed pair with $X \in \mathcal{X}$ and $Y \in\{0,1\}$. Suppose that \mathcal{X} is finite and that (X, Y) has joint probability mass function $p(x, y)$.
a. Express the prior probabilities $\pi_{0}=\mathbb{P}(Y=0)$ and $\pi_{1}=\mathbb{P}(Y=1)$ in terms of $p(x, y)$.
b. Express the class conditional probability mass function $p_{0}(x)=\mathbb{P}(X=x \mid Y=0)$ in terms of $p(x, y)$ and the prior probabilities.
c. Show that the marginal pmf of X can be written as $p(x)=\pi_{0} p_{0}(x)+\pi_{1} p_{1}(x)$ where $p_{1}(x)=\mathbb{P}(X=x \mid Y=1)$.
e. Use Bayes rule to show that $\eta(x):=P(Y=1 \mid X=x)=\pi_{1} p_{1}(x) / p(x)$
4. Let (X, Y) be a discrete random pair with joint probability mass function $p(x, y)$. Recall from the lecture notes that we may define $\mathbb{E}(Y \mid X)=\varphi(X)$ where $\varphi(x)=\sum_{y} y p(y \mid x)$. Establish the following.
a. If $Y \geq 0$ then $\mathbb{E}(Y \mid X) \geq 0$
b. $\mathbb{E}(a Y+b \mid X)=a \mathbb{E}(Y \mid X)+b$
c. $\mathbb{E}\{\mathbb{E}(Y \mid X)\}=\mathbb{E} Y$
5. Let X, Y be non-negative random variables with joint density function $f(x, y)=y^{-1} e^{-x / y} e^{-y}$ for $x, y \geq 0$.
a. Find the marginal density $f(y)$ of Y
b. Find the conditional density $f(x \mid y)$ of X given $Y=y$
c. Find $\mathbb{E}[X \mid Y=y]$
d. Find $\mathbb{E}[X \mid Y]$
6. Let \mathbf{A} and \mathbf{B} be invertible $n \times n$ matrices. Argue that $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.
7. Let \mathbf{A} be an $n \times n$ matrix. Show that if \mathbf{A} has rank n then $\mathbf{A x}=0$ if and only if $\mathbf{x}=0$. Hint: If \mathbf{A} has rank n then its columns are linearly independent.
8. Let $A \in \mathbb{R}^{d \times d}$ be symmetric. The spectral theorem tells us that there is an orthonormal basis v_{1}, \ldots, v_{d} for \mathbb{R}^{d} such that each v_{i} is an eigenvector of A.
a. Show that the $d \times d$ matrix $\Gamma=\left[v_{1}, \ldots, v_{d}\right]$ is orthogonal, that is $\Gamma^{t} \Gamma=I$. Note that this implies $\Gamma \Gamma^{t}=I$, though you do not need to show this.
b. Let $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ be the $d \times d$ diagonal matrix with $D_{i i}$ equal to the i th eigenvalue of A and all other entries equal to zero. Show that $A \Gamma=\Gamma D$.
c. Conclude from the expression above that A can be written in the form $A=\Gamma D \Gamma^{t}$

