Distances and Divergences for Probability Distributions

Andrew Nobel

October, 2020
Basic question: How far apart (different) are two distributions P and Q?

- Measured through distances and divergences
- Used to define convergence of distributions
- Used to assess smoothness of parametrizations $\{P_\theta : \theta \in \Theta\}$
- Means of assessing the complexity of a family of distributions
- Key role in understanding the consistency of inference procedures
- Key ingredient in formulating lower and upper bounds on the performance of inference procedures
Kolmogorov-Smirnov Distance

Definition: Let P and Q be probability distributions on \mathbb{R} with CDFs F and G. The Kolmogorov-Smirnov (KS) distance between P and Q is

$$ KS(P, Q) = \sup_{t} |F(t) - G(t)| $$

Properties of Total Variation

1. $0 \leq KS(P, Q) \leq 1$
2. $KS(P, Q) = 0$ iff $P = Q$
3. KS is a metric
4. $KS(P, Q) = 1$ iff there exists $s \in \mathbb{R}$ with $P((-\infty, s]) = 1$ and $Q((s, \infty)) = 1$
Total Variation Distance

Definition: Let \mathcal{X} be a set with a sigma-field \mathcal{A}. The total variation distance between two probability measures P and Q on $(\mathcal{X}, \mathcal{A})$ is

$$TV(P, Q) = \sup_{A \in \mathcal{A}} |P(A) - Q(A)|$$

Properties of Total Variation

1. $0 \leq TV(P, Q) \leq 1$
2. $TV(P, Q) = 0$ iff $P = Q$
3. TV is a metric
4. $TV(P, Q) = 1$ iff there exists $A \in \mathcal{A}$ with $P(A) = 1$ and $Q(A) = 0$
KS, TV, and the CLT

Note: KS(P, Q) and TV(P, Q) can both be expressed in the form

$$\sup_{A \in A_0} |P(A) - Q(A)|$$

For KS family $A_0 = \text{all intervals } (-\infty, t]$, while for TV family $A_0 = \text{all (Borel) sets}$

Example: Let $X_1, X_2, \ldots \in \{-1, 1\}$ iid with $P(X_i = 1) = P(X_i = -1) = 1/2$. By the standard central limit theorem

$$Z_n = \frac{1}{n^{1/2}} \sum_{i=1}^{n} X_i \Rightarrow \mathcal{N}(0, 1)$$

Let $P_n = \text{distribution of } Z_n$ and $Q = \mathcal{N}(0, 1)$. Can show that

$$\text{KS}(P_n, Q) \leq cn^{-1/2} \quad \text{while} \quad \text{TV}(P_n, Q) \equiv 1$$
Scheffé’s Theorem: Let $P \sim f$ and $Q \sim g$ be distributions on $\mathcal{X} = \mathbb{R}^d$. Then

1. $\text{TV}(P, Q) = \frac{1}{2} \int |f(x) - g(x)| \, dx$

2. $\text{TV}(P, Q) = 1 - \int \min\{f(x), g(x)\} \, dx$

3. $\text{TV}(P, Q) = P(A) - Q(A)$ where $A = \{x : f(x) \geq g(x)\}$

Analogous results hold when $P \sim p(x)$ and $Q \sim q(x)$ are described by pmfs

Upshot: Total variation distance between P and Q is half the L_1-distance between densities or mass functions
Problem: Observe $X \in \mathcal{X}$ having density f_0 or f_1. Wish to test

$$H_0 : X \sim f_0 \ vs. \ H_1 : X \sim f_1$$

Any decision rule $d : \mathcal{X} \rightarrow \{0, 1\}$ has overall (Type I + Type II) error

$$Err(d) = P_0(d(X) = 1) + P_1(d(X) = 0)$$

Fact: The optimum overall error among all decision rules is

$$\inf_{d : \mathcal{X} \rightarrow \{0, 1\}} Err(d) = \int \min\{f_0(x), f_1(x)\} \, dx = 1 - TV(P_0, P_1)$$
Total Variation and Coupling

Definition: A *coupling* of distributions P and Q on \mathcal{X} is a jointly distributed pair of random variables (X, Y) such that $X \sim P$ and $Y \sim Q$.

Fact: $\text{TV}(P, Q)$ is the minimum of $\mathbb{P}(X \neq Y)$ over all couplings of P and Q.

- If $X \sim P$ and $Y \sim Q$ then $\mathbb{P}(X \neq Y) \geq \text{TV}(P, Q)$.
- There is an optimal coupling achieving the lower bound.
- Optimal coupling makes X, Y equal as much as possible.

Note: If ρ is a metric on \mathcal{X} the Wasserstein distance between distributions P and Q is defined by $\min \mathbb{E}[\rho(X, Y)]$ where the minimum is over all couplings (X, Y) of P and Q.
Hellinger Distance

Definition: Let $P \sim f$ and $Q \sim g$ be probability measures on \mathbb{R}^d. The Hellinger distance between P and Q is given by

$$H(P, Q) = \left[\int \left(\sqrt{f(x)} - \sqrt{g(x)} \right)^2 dx \right]^{1/2}$$

Properties of Total Variation

1. $H(P, Q)$ is just the L_2 distance between \sqrt{f} and \sqrt{g}

2. $H^2(P, Q) = 2 \left(1 - \int \sqrt{f(x)g(x)} \, dx \right)$, therefore $0 \leq H^2(P, Q) \leq 2$

3. $H(P, Q) = 0$ iff $P = Q$

4. H is a metric

5. $H^2(P, Q) = 2$ iff there exists $A \in \mathcal{A}$ with $P(A) = 1$ and $Q(A) = 0$
Fact: For any pair of densities f, g we have the following inequalities

$$
\int \min(f, g) \, dx \geq \frac{1}{2} \left(\int \sqrt{fg} \, dx \right)^2 = \frac{1}{2} \left(1 - \frac{1}{2} H^2(f, g) \right)^2
$$

Fact: For any distributions P and Q

$$
\frac{1}{2} H^2(P, Q) \leq TV(P, Q) \leq H(P, Q) \sqrt{1 - \frac{H^2(P, Q)}{4}}
$$

- $H^2(P, Q) = 0$ iff $TV(P, Q) = 0$ and $H^2(P, Q) = 2$ iff $TV(P, Q) = 1$

- $H(P_n, Q_n) \to 0$ iff $TV(P_n, Q_n) \to 0$
Kullback-Liebler (KL) Divergence

Definition: The \(KL \)-divergence between distributions \(P \sim f \) and \(Q \sim g \) is given by

\[
KL(P : Q) = KL(f : g) = \int f(x) \log \frac{f(x)}{g(x)} \, dx
\]

Analogous definition holds for discrete distributions \(P \sim p \) and \(Q \sim q \)

- The integrand can be positive or negative. By convention

\[
f(x) \log \frac{f(x)}{g(x)} = \begin{cases}
+\infty & \text{if } f(x) > 0 \text{ and } g(x) = 0 \\
0 & \text{if } f(x) = 0
\end{cases}
\]

- KL divergence is not symmetric, and is not a metric. Note that

\[
KL(P : Q) = \mathbb{E}_f \left[\log \frac{f(X)}{g(X)} \right]
\]
First Properties of KL Divergence

Fact: The integral defining $\text{KL}(P : Q)$ is well defined. Letting $u_- = \max(-u, 0)$,

\[
\int \left(f(x) \log \frac{f(x)}{g(x)} \right)_- dx < \infty
\]

Key Fact:

- Divergence $\text{KL}(P : Q) \geq 0$ with equality if and only if $P = Q$
- $\text{KL}(P : Q) = +\infty$ if there is a set A with $P(A) > 0$ and $Q(A) = 0$

Notation: When pmfs or pdfs clear from context, write $\text{KL}(p : q)$ or $\text{KL}(f : g)$
KL Divergence Examples

Example: Let p and q be pmfs on $\{0, 1\}$ with

$$p(0) = p(1) = 1/2 \text{ and } q(0) = (1 - \epsilon)/2, \; q(1) = (1 + \epsilon)/2$$

Then we have the following exact expressions, and bounds

- $\text{KL}(p : q) = -\frac{1}{2} \log(1 - \epsilon^2) \leq \epsilon^2$ when $\epsilon \leq \frac{1}{\sqrt{2}}$

- $\text{KL}(q : p) = \frac{1}{2} \log(1 - \epsilon^2) + \frac{\epsilon}{2} \log\left(\frac{1-\epsilon}{1+\epsilon}\right) \leq 2\epsilon^2$

Example: If $P \sim \mathcal{N}_d(\mu_0, \Sigma_0)$ and $Q \sim \mathcal{N}_d(\mu_1, \Sigma_1)$ with $\Sigma_0, \Sigma_1 > 0$ then

$$2 \text{KL}(P : Q) = \text{tr}(\Sigma_1^{-1} \Sigma_0) + (\mu_1 - \mu_0)^t \Sigma_1^{-1}(\mu_1 - \mu_0) + \ln(|\Sigma_1|/|\Sigma_0|) - d$$
KL Divergence and Inference

Ex 1. (Testing) Consider testing $H_0 : X \sim f_0$ vs. $H_1 : X \sim f_1$. The divergence

$$KL(f_0 : f_1) = \mathbb{E}_0 \left(\log \frac{f_0(X)}{f_1(X)} \right) \geq 0$$

is just the expected log likelihood ratio under H_0

Ex 2. (Estimation) Suppose X_1, X_2, \ldots iid with $X_i \sim f(x|\theta_0)$ in $\mathcal{P} = \{f(x|\theta) : \theta \in \Theta\}$. Under suitable assumptions, when n is large,

$$\hat{\theta}_{\text{MLE}}(x) \approx \arg \min_{\theta \in \Theta} \text{KL}(f(\cdot|\theta_0) : f(\cdot|\theta))$$

In other words, MLE is trying to find θ minimizing KL divergence with true distribution.
Fact: For any distributions P and Q we have

(1) $\text{TV}(P, Q)^2 \leq \frac{\text{KL}(P : Q)}{2}$ (Pinsker’s Inequality)

(2) $\text{H}(P, Q)^2 \leq \text{KL}(P : Q)$
Log Sum Inequality

Log-Sum Inequality: If a_1, \ldots, a_n and b_1, \ldots, b_n are non-negative then

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \geq \left(\sum_{i=1}^{n} a_i \right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}$$

with equality iff all the ratios a_i/b_i are equal

Corollary: If $P \sim p$ and $Q \sim q$ are distributions, then for every event B

$$\sum_{x \in B} p(x) \log \frac{p(x)}{q(x)} \geq P(B) \log \frac{P(B)}{Q(B)}$$

with equality iff $p(x)/q(x)$ is constant for $x \in B$
Recall: Given distributions P_1, \ldots, P_n on \mathcal{X} with densities f_1, \ldots, f_n the product distribution $P = \bigotimes_{i=1}^{n} P_i$ on \mathcal{X}^n has density $f(x_1, \ldots, x_n) = f_1(x_1) \cdots f_n(x_n)$

Tensorization: Let P_1, \ldots, P_n and Q_1, \ldots, Q_n be distributions on \mathcal{X}

\[\text{TV}(\bigotimes_{i=1}^{n} P_i, \bigotimes_{i=1}^{n} Q_i) \leq \sum_{i=1}^{n} \text{TV}(P_i, Q_i)\]
\[\text{H}^2(\bigotimes_{i=1}^{n} P_i, \bigotimes_{i=1}^{n} Q_i) \leq \sum_{i=1}^{n} \text{H}^2(P_i, Q_i)\]
\[\text{KL}(\bigotimes_{i=1}^{n} P_i, \bigotimes_{i=1}^{n} Q_i) = \sum_{i=1}^{n} \text{KL}(P_i, Q_i)\]
Distinguishing Coins

Given: Observations $X = X_1, \ldots, X_n \in \{0, 1\}$ iid \sim Bern(θ) with $\theta \in \{\theta_0, \theta_1\}$

Goal: Find a decision rule $d : \{0, 1\}^n \to \{0, 1\}$ such that

\[\star \Pr_0(d(X) = 1) \leq \alpha \]

\[\star \Pr_1(d(X) = 0) \leq \alpha \]

Question: How large does the number of observations n need to be?

Fact: Let $\Delta = |\theta_0 - \theta_1|$. Then there exists a decision procedure achieving performance (\star) and requiring number of observations

\[n = \frac{2 \log(1/\alpha)}{\Delta^2} \]
Identifying Fair and Biased Coins

Suppose now that $\theta_0 = 1/2$ and $\theta_1 = 1/2 + \epsilon$ for some fixed $\epsilon \in (0, 1/4)$

Fact: For every event $A \subseteq \{0, 1\}^n$

$$|\mathbb{P}_0(X \in A) - \mathbb{P}_1(X \in A)| = |P_0(A) - P_1(A)| \leq \epsilon \sqrt{2n}$$

Fact: If $d : \{0, 1\}^n \to \{0, 1\}$ is any decision rule achieving (\star) then

$$n \geq \frac{1 - 2\alpha}{\epsilon^2}$$