STOR 654 Homework 12

- 1. Show that if $U \sim \chi_n^2$ with $n \geq 3$ then $\mathbb{E}U^{-1} = 1/(n-2)$.
- 2. Let $Y \sim \mathcal{N}_n(\theta, \sigma^2 I)$ be generated from a Gaussian sequence model with $\theta \in \mathbb{R}^n$ and σ^2 known. Show that the MLE of θ based on Y is Y itself.
- 3. Let $\Gamma(x)$ be the standard Gamma function, defined for x > 0. Show that if $Z \sim \mathcal{N}(0, 1)$ then for each $p \geq 1$

$$\mathbb{E}|Z|^p = \frac{2^{p/2}}{\sqrt{\pi}}\Gamma((1+p)/2)$$

Deduce from this fact and Stirling's approximation that $||Z||_p := (\mathbb{E}|Z|^p)^{1/p} = O(p^{1/2})$.

- 4. (Stein's Identity for Covariance) Let $(X,Y)^t \sim \mathcal{N}_2(0,\Sigma)$ be jointly distributed normal random variables, and let f be a continuously differentiable real-valued function satisfying appropriate integrability conditions.
 - a. Using the representation theorem, argue that we can write $X = aZ_1 + bZ_2$ and $Y = bZ_1 + cZ_2$ where Z_1, Z_2 are independent standard normal random variables, and a, b, c are real constants.
 - b. Find Cov(X, Y) in terms of a, b, c.
 - c. Show that $Cov(f(X), Y) = \mathbb{E}f'(X) Cov(X, Y)$. Hint: Use the representations of X and Y in terms of Z_1 and Z_2 . Apply Stein's identity after appropriate conditioning.
- 5. (Tensorization) Let P_1, \ldots, P_n and Q_1, \ldots, Q_n be distributions on \mathcal{X} . Show that
 - $\text{TV}(\bigotimes_{i=1}^{n} P_i, \bigotimes_{i=1}^{n} Q_i) \leq \sum_{i=1}^{n} \text{TV}(P_i, Q_i)$
 - $KL(\bigotimes_{i=1}^{n} P_i, \bigotimes_{i=1}^{n} Q_i) = \sum_{i=1}^{n} KL(P_i, Q_i)$
- 6. (Longest increasing subsequence) For $n \geq 1$ let $f_n : [0,1]^n \to \{1,2,\ldots\}$ be the longest increasing subsequence function defined as follows: $f(x_1,\ldots,x_n)$ is the largest integer k for which there exist indices $1 \leq i_1 < \cdots < i_k \leq n$ such that $x_{i_1} \leq x_{i_2} \leq \cdots \leq x_{i_k}$.
 - a. Carefully find the difference coefficients c_1, \ldots, c_n of f_n .
 - b. Let $X_1, \ldots, X_n \in [0, 1]$ be independent. Find a bound on $\mathbb{P}(f_n(X_1^n) \mathbb{E}f_n(X_1^n) \ge t)$ when $t \ge 0$.

- c. What can you say about the limiting behavior of $\mathbb{E}f_n(X_1^n)$ if $X_1, X_2, \ldots \in [0, 1]$ is stationary. Justify your answer.
- 7. Let $U \sim \mathcal{N}_d(\mu, \Sigma)$ and let $V = \Sigma^{1/2}Y + \mu$ where $Y \sim \mathcal{N}_d(0, I)$.
 - (a) Show that $\mathbb{E}U = \mathbb{E}V$ and that Var(U) = Var(V).
 - (b) Fix $v \in \mathbb{R}^d$. Find the distributions of the random variables $v^t U$ and $v^t V$. Note that these distributions are the same.
- 8. Let X and Y be random variables with distributions $P \sim f$ and $Q \sim g$, respectively. Fix a > 0 and let P' and Q' be the distributions of X' = aX and Y' = aY.
 - (a) Does KS(P,Q) = KS(P',Q')?
 - (b) Does TV(P,Q) = TV(P',Q')?