Some Background from Statistics

Andrew Nobel

April, 2020

Conditional Expectations and Probabilities

Expectations

Recall: Let $X \in \mathbb{R}$ be a random variable

- If $X \sim p$ and $\sum_{x} |x| p(x)$ is finite then $\mathbb{E}X = \sum_{x} x p(x)$
- If $X \sim f$ and $\int |x| f(x) dx$ is finite then $\mathbb{E}X = \int x f(x) dx$

Basic properties: Let X, Y be jointly distributed random variables

• If
$$X \leq Y$$
 then $\mathbb{E}X \leq \mathbb{E}Y$

$$\blacktriangleright \mathbb{E}(aX + bY) = a \mathbb{E}X + b \mathbb{E}Y$$

 $\blacktriangleright |\mathbb{E}X| \le \mathbb{E}|X|$

▶ If $X \perp Y$ then $\mathbb{E}(XY) = \mathbb{E}X \mathbb{E}Y$, provided all expectations well defined

• If
$$X \ge 0$$
 then $\mathbb{E}X = \int_0^\infty \mathbb{P}(X \ge t) dt$

Indicator Functions

Definition: If \mathcal{X} is a set and $A \subseteq \mathcal{X}$ the indicator function of A is given by

$$\mathbb{I}_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Sometimes $\mathbb{I}_A(x)$ is written $\mathbb{I}(x \in A)$. Basic properties

- $\blacktriangleright \mathbb{I}_{A^c} = 1 \mathbb{I}_A$
- $\blacktriangleright \mathbb{I}_{A \cap B} = \mathbb{I}_A \mathbb{I}_B$
- $\blacktriangleright \mathbb{I}_{A\cup B} = \max(\mathbb{I}_A, \mathbb{I}_B)$
- If X is a random variable $\mathbb{E}[\mathbb{I}_A(X)] = \mathbb{P}(X \in A)$

$$\int_A h(x) \, dx = \int h(x) \mathbb{I}_A(x) \, dx$$

Conditional Expectation

Let (X, Y) be jointly distributed with $X \in \mathcal{X}$ and $Y \in \mathbb{R}$ with $\mathbb{E}|Y|$ finite

- ▶ If Y is discrete with conditional pmf p(y|x) let $\varphi(x) = \sum_{y} y p(y|x)$
- If Y is continuous with conditional pdf f(y|x) let $\varphi(x) = \int y f(y|x) dy$

Definition: The *conditional expectation* of Y given X is given by

$$\mathbb{E}(Y|X) = \varphi(X)$$
 and $\mathbb{E}(Y|X = x) = \varphi(x)$

Note

• $\mathbb{E}(Y|X)$ is a random variable, and is a function of X

•
$$\mathbb{E}(Z|X,Y) = \varphi(X,Y)$$
 where $\varphi(x,y) = \sum_{z} z p(z|x,y)$

Properties of Conditional Expectation

1. If $Y \ge 0$ then $\mathbb{E}(Y|X) \ge 0$ (positivity)

2. $\mathbb{E}(aZ + bY|X) = a \mathbb{E}(Z|X) + b \mathbb{E}(Y|X)$ (linearity)

3. $\mathbb{E}\{\mathbb{E}(Y|X)\} = \mathbb{E}Y$ (law of total expectation)

4. $\mathbb{P}(Y \in A | X) = \mathbb{E}(\mathbb{I}_A(Y) | X)$

5. $\mathbb{E}[f(X)g(Y)|X] = f(X)\mathbb{E}(g(Y)|X)$ (functions of X act like constants)

6. $\mathbb{E}(h(Y)|X=x) = \sum_{y} h(y) p(y|x)$

7. If $g : \mathbb{R} \to \mathbb{R}$ is convex then $g(\mathbb{E}(Y|X)) \leq \mathbb{E}(g(Y)|X)$ (Jensen)

Conditional Expectation and Prediction

Fact: Let (X, Y) be jointly distributed. Suppose we wish to predict Y be a function of X. For any function $h : \mathcal{X} \to \mathbb{R}$

$$\mathbb{E}(Y - h(X))^2 \ge \mathbb{E}(Y - \mathbb{E}(Y|X))^2$$

Upshot: Under MSE $\mathbb{E}(Y|X)$ best predictor of Y among all functions of X

Turns out: Conditional expectation $\mathbb{E}(Y|X)$ is the MSE projection of *Y* onto the subspace of square integrable functions of *X*.

Maximum Likelihood Estimation

Distribution Family

Given: Family $\mathcal{P} = \{f_{\theta} : \theta \in \Theta\}$ of probability mass/density functions on \mathcal{X}

- $\Theta \subseteq \mathbb{R}^d$ called parameter space, $\theta \in \Theta$ called parameters
- ▶ Parameter $\theta \in \Theta$ fully specifies mass/density function f_{θ}

Examples

- ► Normal $\mathcal{P} = {\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}, \sigma^2 > 0}$
- Exponential $\mathcal{P} = {\text{Exp}(\lambda) : \lambda > 0}$
- Poisson $\mathcal{P} = \{ \mathsf{Poiss}(\lambda) : \lambda > 0 \}$
- ▶ Binomial $\mathcal{P} = {Bin(n, p) : p \in [0, 1]}$

Inference: Parameter Estimation from Data

Given

• Distribution family $\mathcal{P} = \{f_{\theta} : \theta \in \Theta\}$ of interest

b Data set
$$x_1, \ldots, x_n \in \mathcal{X}$$

Assume: x_1, \ldots, x_n drawn indep. from $f_{\theta_0} \in \mathcal{P}$ with θ_0 unknown

Goal: Estimate θ_0 (and therefore f_{θ_0}) from data x_1, \ldots, x_n

Idea: Select $\theta \in \Theta$ that makes given x_1, \ldots, x_n most likely

Maximum Likelihood Estimation

Definition: The likelihood of $\theta \in \Theta$ is joint density of x_1, \ldots, x_n under f_{θ}

$$L(\theta) = \prod_{i=1}^{n} f_{\theta}(x_i)$$

Definition: The maximum likelihood estimator (MLE) of θ_0 is

$$\hat{\theta}_n^{\mathsf{MLE}}(x_1^n) = \operatorname*{argmax}_{\theta \in \Theta} L(\theta)$$

Note: As log(u) strictly increasing, MLE can be written in equivalent form

$$\hat{\theta}_n^{\mathsf{MLE}}(x_1^n) \ = \ \operatorname*{argmax}_{\theta \in \Theta} \log L(\theta) \ = \ \operatorname*{argmax}_{\theta \in \Theta} \sum_{i=1}^n \log f_{\theta}(x_i)$$

Fact: Under appropriate conditions the MLE is

- Consistent: $\hat{\theta}_n^{\text{MLE}}(X_1^n) \to \theta_0$ in probability
- Asymptotically Normal: $n^{1/2} \left(\hat{\theta}_n^{\text{MLE}}(X_1^n) \theta_0 \right) \Rightarrow \mathcal{N}(0, I(\theta_0)^{-1})$

Ex1. X_1, \ldots, X_n iid $\sim f \in \mathcal{P} = \{\mathcal{N}(\mu, \sigma^2) : \mu \in \mathbb{R}\}$ with $\sigma^2 > 0$ known