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Conditional Expectations and Probabilities



Expectations

Recall: Let X ∈ R be a random variable

I If X ∼ p and
∑
x |x| p(x) is finite then EX =

∑
x x p(x)

I If X ∼ f and
∫
|x| f(x) dx is finite then EX =

∫
x f(x) dx

Basic properties: Let X, Y be jointly distributed random variables

I If X ≤ Y then EX ≤ EY

I E(aX + bY ) = aEX + bEY

I |EX| ≤ E|X|

I If X ⊥⊥ Y then E(XY ) = EX EY , provided all expectations well defined

I If X ≥ 0 then EX =
∫∞

0
P(X ≥ t) dt



Indicator Functions

Definition: If X is a set and A ⊆ X the indicator function of A is given by

IA(x) =

{
1 if x ∈ A

0 if x /∈ A

Sometimes IA(x) is written I(x ∈ A). Basic properties

I IAc = 1− IA

I IA∩B = IA IB

I IA∪B = max(IA, IB)

I If X is a random variable E[IA(X)] = P(X ∈ A)

I
∫
A
h(x) dx =

∫
h(x)IA(x) dx



Conditional Expectation

Let (X,Y ) be jointly distributed with X ∈ X and Y ∈ R with E|Y | finite

I If Y is discrete with conditional pmf p(y|x) let ϕ(x) =
∑
y y p(y|x)

I If Y is continuous with conditional pdf f(y|x) let ϕ(x) =
∫
yf(y|x) dy

Definition: The conditional expectation of Y given X is given by

E(Y |X) = ϕ(X) and E(Y |X = x) = ϕ(x)

Note

I E(Y |X) is a random variable, and is a function of X

I E(Z|X,Y ) = ϕ(X,Y ) where ϕ(x, y) =
∑
z z p(z|x, y)



Properties of Conditional Expectation

1. If Y ≥ 0 then E(Y |X) ≥ 0 (positivity)

2. E(aZ + bY |X) = aE(Z|X) + bE(Y |X) (linearity)

3. E{E(Y |X) } = EY (law of total expectation)

4. P(Y ∈ A |X) = E(IA(Y ) |X)

5. E[f(X)g(Y )|X] = f(X)E(g(Y )|X) (functions of X act like constants)

6. E(h(Y )|X = x) =
∑
y h(y) p(y|x)

7. If g : R→ R is convex then g(E(Y |X)) ≤ E(g(Y )|X) (Jensen)



Conditional Expectation and Prediction

Fact: Let (X,Y ) be jointly distributed. Suppose we wish to predict Y be a
function of X. For any function h : X → R

E(Y − h(X))2 ≥ E(Y − E(Y |X))2

Upshot: Under MSE E(Y |X) best predictor of Y among all functions of X

Turns out: Conditional expectation E(Y |X) is the MSE projection of Y onto
the subspace of square integrable functions of X.



Maximum Likelihood Estimation



Distribution Family

Given: Family P = {fθ : θ ∈ Θ} of probability mass/density functions on X

I Θ ⊆ Rd called parameter space, θ ∈ Θ called parameters

I Parameter θ ∈ Θ fully specifies mass/density function fθ

Examples

I Normal P = {N (µ, σ2) : µ ∈ R, σ2 > 0}

I Exponential P = {Exp(λ) : λ > 0}

I Poisson P = {Poiss(λ) : λ > 0}

I Binomial P = {Bin(n, p) : p ∈ [0, 1]}



Inference: Parameter Estimation from Data

Given

I Distribution family P = {fθ : θ ∈ Θ} of interest

I Data set x1, . . . , xn ∈ X

I Assume: x1, . . . , xn drawn indep. from fθ0 ∈ P with θ0 unknown

Goal: Estimate θ0 (and therefore fθ0 ) from data x1, . . . , xn

Idea: Select θ ∈ Θ that makes given x1, . . . , xn most likely



Maximum Likelihood Estimation

Definition: The likelihood of θ ∈ Θ is joint density of x1, . . . , xn under fθ

L(θ) =
n∏
i=1

fθ(xi)

Definition: The maximum likelihood estimator (MLE) of θ0 is

θ̂MLE
n (xn1 ) = argmax

θ∈Θ
L(θ)

Note: As log(u) strictly increasing, MLE can be written in equivalent form

θ̂MLE
n (xn1 ) = argmax

θ∈Θ
logL(θ) = argmax

θ∈Θ

n∑
i=1

log fθ(xi)



Maximum Likelihood Estimation

Fact: Under appropriate conditions the MLE is

I Consistent: θ̂MLE
n (Xn

1 )→ θ0 in probability

I Asymptotically Normal: n1/2 (θ̂MLE
n (Xn

1 )− θ0) ⇒ N (0, I(θ0)−1)

Ex1. X1, . . . , Xn iid ∼ f ∈ P = {N (µ, σ2) : µ ∈ R} with σ2 > 0 known


