STOR 565 Homework

1. Define what it means for a set $C \subseteq \mathbb{R}^{d}$ to be convex. Let $w \in \mathbb{R}^{d}$ be a vector and $b \in \mathbb{R}$ a constant. Show that $C=\left\{x: w^{t} x \geq b\right\}$ and $D=\left\{x: w^{t} x=b\right\}$ are convex subsets of \mathbb{R}^{d}.
2. Let $C_{1}, \ldots, C_{n} \subseteq \mathbb{R}^{d}$ be convex. Show that the intersection $\cap_{i=1}^{n} C_{i}$ is convex.
3. Use the second derivative condition to establish whether the following functions are convex or concave. In each case, sketch the function.
a. The function $f(x)=e^{x}$ on $(-\infty, \infty)$.
b. The function $f(x)=\sqrt{x}$ on $(0, \infty)$.
c. The function $f(x)=1 / x$ on $(0, \infty)$.
d. The function $f(x)=\log x$ on $(0, \infty)$.

Now let $X>0$ be a positive random variable. Write out the conclusion of Jensen's inequality for each of the functions above.
4. (Operations on convex functions that produce new convex functions) Let $C \subseteq \mathbb{R}^{d}$ be a convex set and let $f_{1}, \ldots, f_{n}: C \rightarrow \mathbb{R}$ be convex functions. Use the definition of convexity to establish the following.
a. If a_{1}, \ldots, a_{n} are non-negative then $g(x)=\sum_{i=1}^{n} a_{i} f_{i}(x)$ is convex on C.
b. The function $g(x)=\max _{1 \leq i \leq n} f_{i}(x)$ is convex on C.
c. If $h: \mathbb{R} \rightarrow \mathbb{R}$ is convex and increasing then $g(x)=h(f(x))$ is convex on C. (Recall that h is increasing if $u \leq v$ implies $h(u) \leq h(v))$.
5. Define the function $f(x)=x \log x$ for $x \in(0, \infty)$
a. Sketch the function $f(x)$ and show that it is convex.
b. Find the minimum and argmin of $f(x)$.
b. Let $X>0$ be a random variable. What can you say about the relationship between $\mathbb{E}(X \log X)$ and $\mathbb{E} X \log \mathbb{E} X$?
6. Recall that the Frobenius norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by $\|A\|=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}$, the square root of the sum of the squares of the entries of the matrix. Establish the following properties of the Frobenius norm for matrices.
(a) $\|\mathbf{A}\|=0$ if and only if $\mathbf{A}=0$
(b) $\|b \mathbf{A}\|=|b|\|\mathbf{A}\|$
(c) $\|\mathbf{A}\|^{2}=\sum_{i=1}^{m}\left\|a_{i \cdot}\right\|^{2}=\sum_{j=1}^{n}\left\|a_{\cdot j}\right\|^{2}$. Here a_{i}. denotes the i th row of A, and $a_{\cdot j}$ denotes the j th column of A.
(d) $\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\|$. Hint: Use Cauchy-Schwarz.
7. Suppose that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are orthogonal vectors in \mathbb{R}^{n}. Show that $\left\|\sum_{i=1}^{k} \mathbf{v}_{i}\right\|^{2}=$ $\sum_{i=1}^{k}\left\|\mathbf{v}_{i}\right\|^{2}$. Interpret this in terms of the Pythagorean formula relating the length of the hypotenuse of a right triangle to the lengths of the other edges.
8. Show that if $A \in \mathbb{R}^{n \times n}$ is non-negative definite then all its eigenvalues are non-negative. Hint: Apply the definition of non-negative definite to the eigenvectors of A.
9. Some general questions about rooted binary trees. Refer to the notes on clustering for the definition.
a. Draw a rooted binary tree with 3 nodes. How many leaves does it have? How many internal nodes does it have?
b. Draw a rooted binary tree with 5 nodes. How many leaves does it have? How many internal nodes does it have?
c. Draw essentially different rooted binary trees with 7 nodes. Do they have the same number of internal nodes? Do they have the same number of leaves?
d. Formulate a conjecture about the relationship between the number of internal nodes and the number of leaves in a rooted binary tree.
e. (Optional) Prove your conjecture using induction.

