STOR 565 Homework

Show all work. Note: all logarithms are natural logarithms.

1. Let $\mathbf{u}_{1}=(-1,2,0)^{t}$ and $\mathbf{u}_{2}=(2,4,3)^{t}$. Find the projections of \mathbf{u}_{1} and \mathbf{u}_{2} onto \mathbf{v} where:
2. $\mathbf{v}=(0,1,0)^{t}$
3. $\mathbf{v}=(1,1,1)^{t}$
4. $\mathbf{v}=(1,0,-1)^{t}$
5. Let $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{d}$ be orthonormal vectors with span $V=\left\{\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}: \alpha, \beta \in \mathbb{R}\right\}$. For $\mathbf{u} \in \mathbb{R}^{d}$ define the projection of \mathbf{u} onto V to be the vector $\mathbf{v} \in V$ that is closest to \mathbf{u},

$$
\operatorname{proj}_{V}(\mathbf{u})=\underset{\mathbf{v} \in V}{\operatorname{argmin}}\|\mathbf{u}-\mathbf{v}\| .
$$

Show that $\operatorname{proj}_{V}(\mathbf{u})=\left\langle\mathbf{u}, \mathbf{v}_{1}\right\rangle \mathbf{v}_{1}+\left\langle\mathbf{u}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}$. Hint: Adapt the argument used in class for the projection onto a one-dimensional subspace.
3. Consider a data set consisting of four points in \mathbb{R}^{2}

$$
\mathbf{x}_{1}=(1,2)^{t}, \mathbf{x}_{2}=(-1,2)^{t}, \mathbf{x}_{3}=(2,-1)^{t}, \mathbf{x}_{4}=(2,1)^{t}
$$

1. Replace each observation \mathbf{x}_{i} by the centered observation $\tilde{\mathbf{x}}_{i}=\mathbf{x}_{i}-\frac{1}{4} \sum_{j=1}^{4} \mathbf{x}_{j}$. Draw a plot of the points $\tilde{\mathbf{x}}_{i}$. Form a data matrix \mathbf{X} from $\tilde{\mathbf{x}}_{1}, \ldots, \tilde{\mathbf{x}}_{4}$.
2. Calculate the sample covariance matrix $\mathbf{S}=\frac{1}{4} \mathbf{X}^{T} \mathbf{X}$.
3. Calculate the eigenvalues of \mathbf{S}. Is \mathbf{S} invertible? If so, find \mathbf{S}^{-1}.
4. Find orthonormal eigenvectors of \mathbf{S}.
5. What is the best one-dimensional subspace (line) for approximating the centered observations $\tilde{\mathbf{x}}_{i}$? Draw this line on your plot.
6. Measuring the variability of a set of vectors. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}$ be a sample of $n p$-dimensional vectors. We can measure the extent to which a vector $\mathbf{u} \in \mathbb{R}^{p}$ acts as representative for the sample through the sum of squares

$$
S(\mathbf{u}):=\sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{u}\right\|^{2}
$$

a. Show that $S(\mathbf{u})$ is minimized when \mathbf{u} is equal to the centroid

$$
\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} .
$$

If the general case seems difficult, consider first the case when $p=1$, which you addressed in the previous homework.

Consider the two variance-type quantities

$$
V_{1}=\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\overline{\mathbf{x}}\right\|^{2} \quad \text { and } \quad V_{2}=\frac{1}{2 n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}
$$

Note that V_{1} and V_{2} are non-negative.
b. Carefully describe V_{1} and V_{2} in plain English.
c. Give necessary and sufficient conditions under which $V_{1}=0$.
d. Give necessary and sufficient conditions under which $V_{2}=0$.
e. Show that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{x}_{i}^{t} \mathbf{x}_{j}=\left(\sum_{i=1}^{n} \mathbf{x}_{i}\right)^{t}\left(\sum_{j=1}^{n} \mathbf{x}_{j}\right)=n^{2}\|\overline{\mathbf{x}}\|^{2}
$$

f. Using the identity from part e., and some additional calculations, show that

$$
V_{1}=V_{2}=\frac{1}{n} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}\right\|^{2}-\|\overline{\mathbf{x}}\|^{2}
$$

5. (Inequalities from Calculus) Use calculus to establish the following inequalities.
a. $(1+u / 3)^{3} \geq 1+u$ for every $u \geq 0$
b. $x+x^{-1} \geq 2$ for $x \geq 1$
c. $\log (1+x) \geq x-x^{2} / 2$ for $x \geq 0$. Note that this inequality requires taking a second derivative to show that the first derivative is increasing.
6. Show that if $\mathbf{v}_{1}, \mathbf{v}_{2}$ are eigenvectors of a symmetric matrix \mathbf{A} with different eigenvalues, then $\mathbf{v}_{1}, \mathbf{v}_{2}$ are orthogonal. Hint: Begin by taking transposes to show that $\mathbf{v}_{1}^{t} \mathbf{A} \mathbf{v}_{2}$ and $\mathbf{v}_{2}^{t} \mathbf{A} \mathbf{v}_{1}$ are equal; then use the definition of an eigenvector and simplify.
7. Recall that the trace of an $n \times n$ matrix $\mathbf{A}=\left\{a_{i j}\right\}$ is the sum of its diagonal elements, that is $\operatorname{tr}(\mathbf{A})=\sum_{i=1}^{n} a_{i i}$.
a. Show that $\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{A}^{t}\right)$.
b. Note that $(\mathbf{A B})_{i i}=\sum_{j=1}^{n} a_{i j} b_{j i}$ (Why?). Use this to show that $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B} \mathbf{A})$.
c. By applying the identity of part b. multiple times, show that

$$
\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{B C A})=\operatorname{tr}(\mathbf{C} \mathbf{A B})
$$

d. Suppose that $\mathbf{B}=\left\{b_{i j}\right\}$ is an $m \times n$ matrix. By considering $\left(\mathbf{B}^{t} \mathbf{B}\right)_{i i}$, show that

$$
\operatorname{tr}\left(\mathbf{B}^{t} \mathbf{B}\right)=\sum_{i=1}^{m} \sum_{j=1}^{n} b_{i j}^{2}
$$

