STOR 565 Homework 1

1. Let $X>0$ be a positive, continuous random variable with density f_{X}. Use the CDF method to find the density of $Y=X^{-1}$ in terms of f_{X}.
2. Recall that the variance of a random variable X is defined by $\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2}$. Carefully establish the following.
(a) If a, b are constants, then $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
(b) $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-(\mathbb{E} X)^{2}$ (expand the square in the definition)
(c) $\mathbb{E} X^{2} \geq(E X)^{2}$.
3. In this problem we find an upper bound on the variance of a random variable with values in a finite interval. Let X be a random variable taking values in the finite interval $[0, c]$. You may assume that X is discrete, though this is not necessary for this problem.
(a) Show that $\mathbb{E} X \leq c$ and $\mathbb{E} X^{2} \leq c \mathbb{E} X$.
(b) Recall that $\operatorname{Var}(X)=\mathbb{E} X^{2}-(\mathbb{E} X)^{2}$. Use the inequalities above to show that

$$
\operatorname{Var}(X) \leq c^{2}[u(1-u)] \quad \text { where } \quad u=\frac{\mathbb{E} X}{c} \in[0,1]
$$

(c) Use this inequality and simple calculus to show that $\operatorname{Var}(X) \leq c^{2} / 4$ if $X \in[0, c]$.
(d) Use this result to show that if X is a random variable taking values in an interval $[a, b]$ with $-\infty<a<b<\infty$ then $\operatorname{Var}(X) \leq(b-a)^{2} / 4$
(e) It turns out that the general bound cannot be improved. To see this, show that the variance of the random variable $X \in[a, b]$ with $\mathbb{P}(X=a)=\mathbb{P}(X=b)=1 / 2$ is equal to the bound you found above.
4. Let $\langle x, y\rangle=x^{t} y=\sum_{i=1}^{d} x_{i} y_{i}$ be the usual inner product in \mathbb{R}^{d}. Recall that the norm of a vector $x \in \mathbb{R}^{d}$ is defined by $\|x\|=\langle x, x\rangle^{1 / 2}$
(a) Show that $\|x\|=0$ if and only if $x=0$.
(b) Use the definition of the norm to show that $\|x+y\|^{2}=\|x\|^{2}+2\langle x, y\rangle+\|y\|^{2}$.
(c) Use this equation and the Cauchy Schwarz inequality to establish the triangle inequality for the vector norm, namely $\|x+y\| \leq\|x\|+\|y\|$.
(d) The standard Euclidean distance between two vectors $x, y \in \mathbb{R}^{d}$ is defined by $d(x, y)=$ $\|x-y\|$. Use part (c) to establish that $d(x, y) \leq d(x, z)+d(z, y)$ for any vectors $x, y, z \in \mathbb{R}^{d}$. Draw a picture illustrating this result.
5. Show that if $f(x)$ is bounded and $X \sim \operatorname{Poiss}(\lambda)$ then $\mathbb{E}[\lambda f(X+1)]=\mathbb{E}[X f(X)]$. Here $\operatorname{Poiss}(\lambda)$ denotes the usual Poisson distribution with $\operatorname{pmf} p(k)=e^{-\lambda} \lambda^{k} / k!$ for $k \geq 0$.
6. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ be two sequences of real numbers.
(a) Show that $\min \left\{a_{i}\right\}+\min \left\{b_{i}\right\} \leq \min \left\{a_{i}+b_{i}\right\} \leq \min \left\{a_{i}\right\}+\max \left\{b_{i}\right\}$.

Hints: For the first inequality, note that the leftmost term is less than or equal to $a_{j}+b_{j}$ for every j. For the second inequality, note that the middle term is less than or equal to $a_{j}+b_{j}$ where $a_{j}=\min \left\{a_{i}\right\}$.
(b) As clearly as you can, provide an English language explanation of the inequalities above.
(c) Following the arguments from the lecture, show that $\max \left\{-b_{i}\right\}=-\min \left\{b_{i}\right\}$.
(d) Use the results above to show that

$$
\min \left\{a_{i}\right\}-\max \left\{b_{i}\right\} \leq \min \left\{a_{i}-b_{i}\right\} \leq \min \left\{a_{i}\right\}-\min \left\{b_{i}\right\} .
$$

7. In each case below find $\min _{x \in \mathcal{X}} f(x), \operatorname{argmin}_{x \in \mathcal{X}} f(x), \max _{x \in \mathcal{X}} f(x)$, and $\operatorname{argmax}_{x \in \mathcal{X}} f(x)$. Indicate when the min or the max do not exist. It may help to sketch the functions.
(a) $f(x)=\sin x$ with $\mathcal{X}=[0,2 \pi]$ and $\mathcal{X}=[0, \pi]$
(b) $f(x)=\min \left(x^{2}, 1\right)$ with $\mathcal{X}=[0,2]$ and $\mathcal{X}=(-2,2]$
8. The probability that an individual has a certain rate disease is about 1 percent. If they have the disease, the chance that they test positive is 90 percent. If they do not have the disease, the chance that they nevertheless test positive is 9 percent. What is the probability that someone who tests positive actually has the disease? (Use Bayes Formula.) What does this say about the test?
