STOR 565 Machine Learning Probability Overview

Andrew Nobel

January 2016

Basics of Set Theory

Definition (informal): A set is an unordered collection of objects.

Notation: A, B, C denote sets and x, y, z denote objects.

Basic relations between sets and objects

1. Containment

- Notation $x \in A$
- Meaning: Object x is a member/element of the set A

Basics of Set Theory, cont.

2. Subset

- Notation $A \subseteq B$
- Set A is a subset of B. Formally, if $x \in A$ then $x \in B$.

3. Equality

- Notation A = B
- Sets A and B are equal if they have the same members.

Note: A = B is logically equivalent to $A \subseteq B$ and $B \subseteq A$.

Definition: The **Cardinality** of a set A, written |A|, is the number of objects in A, which may be infinite.

Sets Specified by Lists

Template: If x_1, x_2, \ldots is a finite or infinite family of objects, then

 $\{x_1, x_2, \ldots\}$

is the set containing these objects, without regards to order or repetition.

Examples:

•
$$A = \{1, 2, 5, 9\}, |A| = 4$$

- $B = \{ \text{Ziggy, JoJo, Buddy} \}, |B| = 3$
- $C = \{ All \text{ freshman at UNC} \}, |C| \text{ is finite}$
- ▶ Natural numbers $\mathbb{N} = \{0, 1, 2, 3, ...\}$, $|\mathbb{N}|$ is (countably) infinite
- ▶ Real numbers $\mathbb{R} = (-\infty, +\infty)$, $|\mathbb{R}|$ is (uncountably) infinite

Note: $A = \{5, 2, 1, 9\}$ and $B = \{$ JoJo, Ziggy, Buddy, Ziggy $\}$

The Empty Set and Recursive Bracing

Definition: The **empty set**, denoted \emptyset , is the set with no elements.

Fact: For any set *A*, it is vacuously true that $\emptyset \subseteq A$.

Note: If *B* is a set then $\{B\}$ is the set that contains *A* as its sole element. Applying this rule recursively to the empty set \emptyset , we can define

$$A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\$$

Questions:

- What is |A|?
- ▶ Is $\emptyset \subseteq A$? Is $\emptyset \in A$?
- ▶ Is $\{\emptyset\} \subseteq A$? Is $\{\emptyset\} \in A$?

Sets Specified by Conditions

Template: Wish to specify a subset of some universal/background set that satisfy some conditions. General format

 $\{x : conditions(x)\} =$ The set of x satisfying the conditions

Examples

- $\{x : x \text{ is prime }\} \subseteq \mathbb{N}$
- ▶ Rational numbers $\{x : x = a/b \text{ where } a, b \in \mathbb{N} \text{ and } b > 0\} \subseteq \mathbb{R}$
- Unit interval $[0,1] = \{x : 0 \le x \le 1\} \subseteq \mathbb{R}$

Basic Operations on Sets

1. Complement $A^c = \{x : x \notin A\} =$ Objects *not* in A

2. Union $A \cup B = \{x : x \in A \text{ or } x \in B\} = \text{Objects in } A \text{ or } B$

3. Intersection $A \cap B = \{x : x \in A \text{ and } x \in B\} = \text{Objects in } A \text{ and } B$

Note: Unions and intersections of three or more sets can be defined similarly

- $\blacktriangleright \ A \cup B \cup C$
- $\blacktriangleright \ A \cap B \cap C.$

Definition: Sets *A* and *B* are **disjoint** if $A \cap B = \emptyset$, that is, they have no elements in common.

Set Operations, cont.

Basic containment relations: $A \cap B \subseteq A, B \subseteq A \cup B$

DeMorgan's Laws

- $\blacktriangleright (A \cup B)^c = A^c \cap B^c$
- $\blacktriangleright (A \cap B)^c = A^c \cup B^c$

Distributive Laws

- $\blacktriangleright \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $\bullet \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Random Experiments

An **experiment** is an idealized procedure that can be repeated and that has a well-defined set of possible outcomes.

An experiment is **random** if its outcome is uncertain in advance.

Examples

- Flip a coin three times
- Roll a die two times
- Choose three cards at random from a standard deck
- Count number of defective items in shipment of electronic components
- Measure the lifetime of a particular brand of lightbulb

Study of probability begins with a basic model for random experiments. The first two components of the model are:

1. Sample space Denoted Ω , this is just the set of possible outcomes

2. Events An event is a (sometimes any) subset of the sample space

Terminology: An event $A \subseteq \Omega$ occurs if outcome of the experiment is in A.

Ex: Three Flips

1. Sample space: Let H = Heads, T = Tails. Then

 $\Omega = \{\text{TTT}, \text{TTH}, \text{THT}, \text{HTT}, \text{THH}, \text{HTH}, \text{HHT}, \text{HHH}\}$

Note that $|\Omega| = 2 \times 2 \times 2 = 8$.

2. Some events

- ▶ No Heads = {TTT}
- Number of Heads equals Number of Tails = Ø
- First flip is Heads = {HHH, HTH, HHT, HTT}
- At least two Heads = {HHT, HTH, THH, HHH}
- All flips the same = {HHH, TTT}

Ex: Two Rolls

1. Sample space: Each roll shows 1, 2, 3, 4, 5, or 6 dots. Then

```
\Omega=\{(i,j):1\leq i,j\leq 6\}
```

Here i = outcome of first roll, j = outcome of second roll. $|\Omega| = 6 \times 6 = 36$.

Some events

- First roll is $\mathbf{1} = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)\}$
- Both rolls the same = $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$
- Sum of rolls is $9 = \{(3, 6), (6, 3), (4, 5), (5, 4)\}$
- Product of rolls is $8 = \{(2, 4), (4, 2)\}$

Final Component of Probability Model

Probability measure $P(\cdot)$: For each event $A \subseteq \Omega$

P(A) = probability that the outcome of the experiment lies in A

Probability measures satisfy the following axioms

1. $P(A) \ge 0$ for every event $A \subseteq \Omega$ (non-negative)

2. $P(\Omega) = 1$ (sample space has probability one)

3. If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$ (additivity)

Basic Idea: If we think of Ω as a figure in the plane with unit area, then P(A) is like the area of A.

Elementary Properties of Probabilities

1. If $A \subseteq B$ then $P(A) \leq P(B)$.

2. For every event A, the probability P(A) is between 0 and 1.

3. $P(A^c) = 1 - P(A)$

4.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \le P(A) + P(B)$$

5. $P(\bigcup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} P(A_i)$

Meaning/Interpretations of Probability

1. Objective/Frequentist: Long run relative frequency

If we repeat the basic experiment many times then for any event A

 $\frac{\text{\# times } A \text{ occurs}}{\text{total \# repetitions}} \approx P(A)$

Problem: How to interpret probability of singular events, e.g.,

- The Buffalo Bills win next year's Superbowl
- The next president of the U.S. is a woman
- 2. Subjective/Bayesian: Degree of belief or evidentiary support

Important: Mathematical truth of theorems of probability theory does not depend on interpretation.

Uniform Probability Model

Consider: experiment with finite sample space $\Omega = \{\omega_1, \ldots, \omega_m\}$

Uniform probability model: All outcomes are equally likely, i.e.,

$$P(\omega_j) = rac{1}{|\Omega|}$$
 for $1 \le j \le m$

In this case, the axioms ensure that for each event $A \subseteq \Omega$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\text{\# outcomes in } A}{\text{total \# outcomes}}$$

so we can find probabilities by counting outcomes.

Ex: Three Flips

Recall $\Omega = \{$ TTT, TTH, THT, HTT, THH, HTH, HHT, HHH $\}$ and $|\Omega| = 8$

Consider events

- A =First flip is Heads = {HHH, HTH, HHT, HTT}
- B =Second flip is Heads = {HHH, THH, HHT, THT}
- $A \cap B =$ First two flips are Heads = {HHH, HHT}

Under the uniform probability model $P(\cdot)$

$$P(A) = \frac{|A|}{|\Omega|} = \frac{4}{8} = \frac{1}{2} \qquad P(B) = \frac{|B|}{|\Omega|} = \frac{4}{8} = \frac{1}{2}$$
$$P(A \cap B) = \frac{|A \cap B|}{|\Omega|} = \frac{2}{8} = \frac{1}{4}$$

Independence

Definition: Events A and B in a random experiment are independent if

 $P(A \cap B) = P(A) P(B)$

Note:

- Independence is different from disjointness
 - ► A and B are disjoint if they *don't* overlap
 - A and B are independent if they overlap just the right amount
- Independence depends on the probability $P(\cdot)$.

Ex: Three Flips

- A = First flip is Heads = {HHH, HTH, HHT, HTT}
- B = Second flip is Heads = {HHH, THH, HHT, THT}
- $C = At least two Heads = \{HHT, HTH, THH, HHH\}$

Under uniform probability P(),

$$P(A) \cdot P(B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} = P(A \cap B)$$

Thus A and B are independent. By contrast,

$$P(A \cap C) = \frac{|A \cap C|}{8} = \frac{3}{8} \neq P(A) \cdot P(C) = \frac{1}{4}$$

Thus A and C are not independent.

Ex: Three Flips, continue

Let events A, B, C be as before, and consider the probability P' such that

P'(HHH) = P'(TTT) = 1/2

and all other outcomes have probability zero.

The probability P'() models an experiment in which the outcomes are **completely dependent**. Either all flips are *H* or all flips are *T*.

Under P'() the events A and C are not independent. In fact,

$$P(A) = P(B) = P(A \cap B) = 1/2$$

Conditional Probability

Definition: Let *A* and *B* be events with P(B) > 0. The **conditional probability** of *A* given *B* is defined by

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Notes:

- The vertical bar '|' is read as "given"
- B is the conditioning event; its probability goes in the denominator
- Interpretation of P(A | B)
 - What is the probability of A if we are told that B occurred?
 - ► The proportion of *B* occupied by *A*
 - The probability of A if Ω were replaced by B

Conditional Probability, cont.

Note: If A and B are independent, then

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) P(B)}{P(B)} = P(A)$$

and similarly, P(B | A) = P(B).

Interpretation: Knowing that B occurred tells us nothing about the probability of A, and vice-versa.

In general, P(A | B) can be less than, equal to, or greater than P(A).

Consider events

- A = First flip is H
- B = Second flip is T
- ${\cal C}={\rm At}$ least two Hs

Note: Under uniform probability P, events A, B are independent, so

 $P(A \mid B) = P(A)$

But events A, C and events B, C are **not** independent. In fact,

 $P(C \mid A) > P(C) \qquad P(C \mid B) < P(C)$

Independence in Inference

Problem: Estimate (unknown) number N of people killed in a conflict

Available data: Two lists of individuals killed in the conflict, prepared by independent observers.

- N_1 = number of individuals on first list
- ▶ N₂ = number of individuals on second list
- $N_{1,2}$ = number of individuals on both lists

Consider proportions

$$\hat{p}_1 = \frac{N_1}{N} =$$
 proportion of casualties on first list

$$\hat{p}_2 = \frac{N_2}{N} =$$
 proportion of casualties on second list

$$\hat{p}_{1,2} = \frac{N_{1,2}}{N} =$$
 proportion of casualties on both lists

Independence in Inference, cont.

Key Ideas

- Proportions \hat{p} are estimates of true probabilities p
- If the lists are collected independently, then $p_{1,2} = p_1 \cdot p_2$.

Substituting estimates \hat{p} for true probabilities p we find

$$\frac{N_{1,2}}{N} = \hat{p}_{1,2} = \hat{p}_1 \cdot \hat{p}_1 = \frac{N_1}{N} \cdot \frac{N_2}{N}$$

Rearranging terms gives estimate of number of fatalities

$$N \approx \frac{N_1 N_2}{N_{1,2}}$$

Conditional Probability, cont.

Chain Rule: Rewriting definition of conditional probability gives

$$P(A \cap B) = P(A) \cdot P(B \mid A)$$

Law of Total Probability: Note that $B = (B \cap A) \cup (B \cap A^c)$. Then we have

$$P(B) = P((B \cap A) \cup (B \cap A^{c}))$$
 [by the identity above]

= $P(B \cap A) + P(B \cap A^c)$ [as $B \cap A$ and $B \cap A^c$ are disjoint]

 $= P(B | A) P(A) + P(B | A^{c}) P(A^{c})$ [by the chain rule]

Bayes's Formula

Fact: If *A* and *B* are events with P(A), P(B) > 0 then

$$P(A | B) = \frac{P(B | A) P(A)}{P(B | A) P(A) + P(B | A^{c}) P(A^{c})}$$

Proof: By definition

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Apply chain rule to the numerator, law of total probability to the denominator.

Interpretation

- P(A) is the **prior** probability of A
- P(A | B) is the **posterior** probability of A after we know B occurred
- ▶ Think of A as unobserved "cause" and B as observed "effect"
- Formula tells us how to update prior probability of A given B

Example: Guessing on Multiple Choice Question

Multiple choice question with 5 possible answers.

If a student knows the correct answer, they choose it; if not, they choose one of the answers at random (with equal probability).

Suppose that a student knows the correct answer with probability .70. If they answer the question correctly, how likely is it that they were guessing?

Cause (unobserved) A = student knows the correct answer

Effect (observed) B = student answers question correctly

Multiple Choice Question, cont.

We are given

▶
$$P(A) = .70$$
 so $P(A^c) = 1 - P(A) = .30$

•
$$P(B | A) = 1$$
 and $P(B | A^c) = 1/5 = .20$

Applying Bayes formula gives

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B \mid A) P(A) + P(B \mid A^c) P(A^c)}$$
$$= \frac{1 \times .70}{1 \times .70 + .20 \times .30}$$
$$\approx .92$$

Boys and Girls

Family with two children: possible sexes of first, second children are

 $\{(M, M), (M, F), (F, M), (F, F)\}$

Define events

- A = First child a girl
- B = Second child a girl
- C = At least one girl

Suppose all four possibilities are equally likely. Find

 $P(B \mid A)$

 $P(B \mid C)$

Note that P(C | B) = 1 so $P(C | B) \neq P(B | C)$. Order of events matters!