STOR 565 Machine Learning Probability Overview

Andrew Nobel

January 2016

Basics of Set Theory

Definition (informal): A set is an unordered collection of objects.
Notation: A, B, C denote sets and x, y, z denote objects.

Basic relations between sets and objects

1. Containment

- Notation $x \in A$
- Meaning: Object x is a member/element of the set A

Basics of Set Theory, cont.

2. Subset

- Notation $A \subseteq B$
- Set A is a subset of B. Formally, if $x \in A$ then $x \in B$.

3. Equality

- Notation $A=B$
- Sets A and B are equal if they have the same members.

Note: $A=B$ is logically equivalent to $A \subseteq B$ and $B \subseteq A$.

Definition: The Cardinality of a set A, written $|A|$, is the number of objects in A, which may be infinite.

Sets Specified by Lists

Template: If x_{1}, x_{2}, \ldots is a finite or infinite family of objects, then

$$
\left\{x_{1}, x_{2}, \ldots\right\}
$$

is the set containing these objects, without regards to order or repetition.

Examples:

- $A=\{1,2,5,9\}, \quad|A|=4$
- $B=\{$ Ziggy, JoJo, Buddy $\}, \quad|B|=3$
- $C=\{$ All freshman at UNC $\},|C|$ is finite
- Natural numbers $\mathbb{N}=\{0,1,2,3, \ldots\},|\mathbb{N}|$ is (countably) infinite
- Real numbers $\mathbb{R}=(-\infty,+\infty),|\mathbb{R}|$ is (uncountably) infinite

Note: $A=\{5,2,1,9\}$ and $B=\{$ JoJo, Ziggy, Buddy, Ziggy $\}$

The Empty Set and Recursive Bracing

Definition: The empty set, denoted \emptyset, is the set with no elements.
Fact: For any set A, it is vacuously true that $\emptyset \subseteq A$.

Note: If B is a set then $\{B\}$ is the set that contains A as its sole element. Applying this rule recursively to the empty set \emptyset, we can define

$$
A=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\}\}
$$

Questions:

- What is $|A|$?
- Is $\emptyset \subseteq A$? Is $\emptyset \in A$?
- Is $\{\emptyset\} \subseteq A$? Is $\{\emptyset\} \in A$?

Sets Specified by Conditions

Template: Wish to specify a subset of some universal/background set that satisfy some conditions. General format
$\{x:$ conditions $(x)\}=$ The set of x satisfying the conditions

Examples

- $\{x: x$ is prime $\} \subseteq \mathbb{N}$
- Rational numbers $\{x: x=a / b$ where $a, b \in \mathbb{N}$ and $b>0\} \subseteq \mathbb{R}$
- Unit interval $[0,1]=\{x: 0 \leq x \leq 1\} \subseteq \mathbb{R}$

Basic Operations on Sets

1. Complement $A^{c}=\{x: x \notin A\}=$ Objects not in A
2. Union $A \cup B=\{x: x \in A$ or $x \in B\}=$ Objects in A or B
3. Intersection $A \cap B=\{x: x \in A$ and $x \in B\}=$ Objects in A and B

Note: Unions and intersections of three or more sets can be defined similarly

- $A \cup B \cup C$
- $A \cap B \cap C$.

Definition: Sets A and B are disjoint if $A \cap B=\emptyset$, that is, they have no elements in common.

Set Operations, cont.

Basic containment relations: $A \cap B \subseteq A, B \subseteq A \cup B$

DeMorgan's Laws

- $(A \cup B)^{c}=A^{c} \cap B^{c}$
- $(A \cap B)^{c}=A^{c} \cup B^{c}$

Distributive Laws

- $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Random Experiments

An experiment is an idealized procedure that can be repeated and that has a well-defined set of possible outcomes.

An experiment is random if its outcome is uncertain in advance.

Examples

- Flip a coin three times
- Roll a die two times
- Choose three cards at random from a standard deck
- Count number of defective items in shipment of electronic components
- Measure the lifetime of a particular brand of lightbulb

Probability Model

Study of probability begins with a basic model for random experiments. The first two components of the model are:

1. Sample space Denoted Ω, this is just the set of possible outcomes
2. Events An event is a (sometimes any) subset of the sample space

Terminology: An event $A \subseteq \Omega$ occurs if outcome of the experiment is in A.

Ex: Three Flips

1. Sample space: Let $\mathrm{H}=$ Heads, $\mathrm{T}=$ Tails. Then

$$
\Omega=\{\text { TTT, TTH, THT, HTT, THH, HTH, HHT, HHH }\}
$$

Note that $|\Omega|=2 \times 2 \times 2=8$.
2. Some events

- No Heads $=\{T T T\}$
- Number of Heads equals Number of Tails $=\emptyset$
- First flip is Heads $=\{\mathrm{HHH}, \mathrm{HTH}, \mathrm{HHT}, \mathrm{HTT}\}$
- At least two Heads $=\{$ HHT, HTH, THH, HHH $\}$
- All flips the same $=\{\mathrm{HHH}, \mathrm{TTT}\}$

Ex: Two Rolls

1. Sample space: Each roll shows $1,2,3,4,5$, or 6 dots. Then

$$
\Omega=\{(i, j): 1 \leq i, j \leq 6\}
$$

Here $i=$ outcome of first roll, $j=$ outcome of second roll. $|\Omega|=6 \times 6=36$.

Some events

- First roll is $1=\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)\}$
- Both rolls the same $=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$
- Sum of rolls is $9=\{(3,6),(6,3),(4,5),(5,4)\}$
- Product of rolls is $8=\{(2,4),(4,2)\}$

Final Component of Probability Model

Probability measure $P(\cdot)$: For each event $A \subseteq \Omega$
$P(A)=$ probability that the outcome of the experiment lies in A

Probability measures satisfy the following axioms

1. $P(A) \geq 0$ for every event $A \subseteq \Omega$ (non-negative)
2. $P(\Omega)=1$ (sample space has probability one)
3. If $A \cap B=\emptyset$ then $P(A \cup B)=P(A)+P(B)$ (additivity)

Basic Idea: If we think of Ω as a figure in the plane with unit area, then $P(A)$ is like the area of A.

Elementary Properties of Probabilities

1. If $A \subseteq B$ then $P(A) \leq P(B)$.
2. For every event A, the probability $P(A)$ is between 0 and 1 .
3. $P\left(A^{c}\right)=1-P(A)$
4. $P(A \cup B)=P(A)+P(B)-P(A \cap B) \leq P(A)+P(B)$
5. $P\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)$

Meaning/Interpretations of Probability

1. Objective/Frequentist: Long run relative frequency

If we repeat the basic experiment many times then for any event A

$$
\frac{\# \text { times } A \text { occurs }}{\text { total \# repetitions }} \approx P(A)
$$

Problem: How to interpret probability of singular events, e.g.,

- The Buffalo Bills win next year's Superbowl
- The next president of the U.S. is a woman

2. Subjective/Bayesian: Degree of belief or evidentiary support

Important: Mathematical truth of theorems of probability theory does not depend on interpretation.

Uniform Probability Model

Consider: experiment with finite sample space $\Omega=\left\{\omega_{1}, \ldots, \omega_{m}\right\}$

Uniform probability model: All outcomes are equally likely, i.e.,

$$
P\left(\omega_{j}\right)=\frac{1}{|\Omega|} \text { for } 1 \leq j \leq m
$$

In this case, the axioms ensure that for each event $A \subseteq \Omega$

$$
P(A)=\frac{|A|}{|\Omega|}=\frac{\# \text { outcomes in } A}{\text { total \# outcomes }}
$$

so we can find probabilities by counting outcomes.

Ex: Three Flips

Recall $\Omega=\{$ TTT, TTH, THT, HTT, THH, HTH, HHT, HHH $\}$ and $|\Omega|=8$

Consider events

$A=$ First flip is Heads $=\{\mathrm{HHH}, \mathrm{HTH}, \mathrm{HHT}, \mathrm{HTT}\}$
$B=$ Second flip is Heads $=\{\mathrm{HHH}, \mathrm{THH}, \mathrm{HHT}, \mathrm{THT}\}$
$A \cap B=$ First two flips are Heads $=\{\mathrm{HHH}, \mathrm{HHT}\}$

Under the uniform probability model $P(\cdot)$

$$
\begin{gathered}
P(A)=\frac{|A|}{|\Omega|}=\frac{4}{8}=\frac{1}{2} \quad P(B)=\frac{|B|}{|\Omega|}=\frac{4}{8}=\frac{1}{2} \\
P(A \cap B)=\frac{|A \cap B|}{|\Omega|}=\frac{2}{8}=\frac{1}{4}
\end{gathered}
$$

Independence

Definition: Events A and B in a random experiment are independent if

$$
P(A \cap B)=P(A) P(B)
$$

Note:

- Independence is different from disjointness
- A and B are disjoint if they don't overlap
- A and B are independent if they overlap just the right amount
- Independence depends on the probability $P(\cdot)$.

Ex: Three Flips

$A=$ First flip is Heads $=\{\mathrm{HHH}, \mathrm{HTH}, \mathrm{HHT}, \mathrm{HTT}\}$
$B=$ Second flip is Heads $=\{\mathrm{HHH}, \mathrm{THH}, \mathrm{HHT}, \mathrm{THT}\}$
$C=$ At least two Heads $=\{H H T$, HTH, THH, HHH $\}$
Under uniform probability $P()$,

$$
P(A) \cdot P(B)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}=P(A \cap B)
$$

Thus A and B are independent. By contrast,

$$
P(A \cap C)=\frac{|A \cap C|}{8}=\frac{3}{8} \neq P(A) \cdot P(C)=\frac{1}{4}
$$

Thus A and C are not independent.

Ex: Three Flips, continue

Let events A, B, C be as before, and consider the probability P^{\prime} such that

$$
P^{\prime}(H H H)=P^{\prime}(T T T)=1 / 2
$$

and all other outcomes have probability zero.

The probability $P^{\prime}()$ models an experiment in which the outcomes are completely dependent. Either all flips are H or all flips are T.

Under $P^{\prime}()$ the events A and C are not independent. In fact,

$$
P(A)=P(B)=P(A \cap B)=1 / 2
$$

Conditional Probability

Definition: Let A and B be events with $P(B)>0$. The conditional probability of A given B is defined by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Notes:

- The vertical bar '|' is read as "given"
- B is the conditioning event; its probability goes in the denominator
- Interpretation of $P(A \mid B)$
- What is the probability of A if we are told that B occurred?
- The proportion of B occupied by A
- The probability of A if Ω were replaced by B

Conditional Probability, cont.

Note: If A and B are independent, then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}=P(A)
$$

and similarly, $P(B \mid A)=P(B)$.

Interpretation: Knowing that B occurred tells us nothing about the probability of A, and vice-versa.

In general, $P(A \mid B)$ can be less than, equal to, or greater than $P(A)$.

Example: Three Flips

Consider events

$A=$ First flip is H
$B=$ Second flip is T
$C=$ At least two Hs

Note: Under uniform probability P, events A, B are independent, so

$$
P(A \mid B)=P(A)
$$

But events A, C and events B, C are not independent. In fact,

$$
P(C \mid A)>P(C) \quad P(C \mid B)<P(C)
$$

Independence in Inference

Problem: Estimate (unknown) number N of people killed in a conflict

Available data: Two lists of individuals killed in the conflict, prepared by independent observers.

- $N_{1}=$ number of individuals on first list
- $N_{2}=$ number of individuals on second list
- $N_{1,2}=$ number of individuals on both lists

Consider proportions

$$
\begin{aligned}
\hat{p}_{1} & =\frac{N_{1}}{N}=\text { proportion of casualties on first list } \\
\hat{p}_{2} & =\frac{N_{2}}{N}=\text { proportion of casualties on second list } \\
\hat{p}_{1,2} & =\frac{N_{1,2}}{N}=\text { proportion of casualties on both lists }
\end{aligned}
$$

Independence in Inference, cont.

Key Ideas

- Proportions \hat{p} are estimates of true probabilities p
- If the lists are collected independently, then $p_{1,2}=p_{1} \cdot p_{2}$.

Substituting estimates \hat{p} for true probabilities p we find

$$
\frac{N_{1,2}}{N}=\hat{p}_{1,2}=\hat{p}_{1} \cdot \hat{p}_{1}=\frac{N_{1}}{N} \cdot \frac{N_{2}}{N}
$$

Rearranging terms gives estimate of number of fatalities

$$
N \approx \frac{N_{1} N_{2}}{N_{1,2}}
$$

Conditional Probability, cont.

Chain Rule: Rewriting definition of conditional probability gives

$$
P(A \cap B)=P(A) \cdot P(B \mid A)
$$

Law of Total Probability: Note that $B=(B \cap A) \cup\left(B \cap A^{c}\right)$. Then we have

$$
\begin{aligned}
P(B) & =P\left((B \cap A) \cup\left(B \cap A^{c}\right)\right) \quad \text { [by the identity above] } \\
& =P(B \cap A)+P\left(B \cap A^{c}\right) \quad \text { [as } B \cap A \text { and } B \cap A^{c} \text { are disjoint] } \\
& =P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right) \quad \text { [by the chain rule] }
\end{aligned}
$$

Bayes's Formula

Fact: If A and B are events with $P(A), P(B)>0$ then

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)}
$$

Proof: By definition

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Apply chain rule to the numerator, law of total probability to the denominator.

Interpretation

- $P(A)$ is the prior probability of A
- $P(A \mid B)$ is the posterior probability of A after we know B occurred
- Think of A as unobserved "cause" and B as observed "effect"
- Formula tells us how to update prior probability of A given B

Example: Guessing on Multiple Choice Question

Multiple choice question with 5 possible answers.

If a student knows the correct answer, they choose it; if not, they choose one of the answers at random (with equal probability).

Suppose that a student knows the correct answer with probability .70. If they answer the question correctly, how likely is it that they were guessing?

Cause (unobserved) $A=$ student knows the correct answer

Effect (observed) $B=$ student answers question correctly

Multiple Choice Question, cont.

We are given

- $P(A)=.70$ so $P\left(A^{c}\right)=1-P(A)=.30$
- $P(B \mid A)=1$ and $P\left(B \mid A^{c}\right)=1 / 5=.20$

Applying Bayes formula gives

$$
\begin{aligned}
P(A \mid B) & =\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)} \\
& =\frac{1 \times .70}{1 \times .70+.20 \times .30} \\
& \approx .92
\end{aligned}
$$

Boys and Girls

Family with two children: possible sexes of first, second children are

$$
\{(M, M),(M, F),(F, M),(F, F)\}
$$

Define events
$A=$ First child a girl
$B=$ Second child a girl
$C=$ At least one girl
Suppose all four possibilities are equally likely. Find

$$
\begin{aligned}
& P(B \mid A) \\
& P(B \mid C)
\end{aligned}
$$

Note that $P(C \mid B)=1$ so $P(C \mid B) \neq P(B \mid C)$. Order of events matters!

