STOR 655 Homework 10

1. Let X_1, \ldots, X_n be independent standard normal random variables. Here we identify upper and lower bounds for the expectation of $K_n := \max_{1 \le i \le n} |X_i|$.

- (a) Using the bound from class and the fact that $K_n = \max_i (X_i, -X_i)$ show that $\mathbb{E}K_n \le (2 \log 2n)^{1/2}$.
- (b) Let $\Phi()$ be the CDF of the standard normal. Show that

$$K_n = \Phi^{-1} \left(\frac{1}{2} + \frac{1}{2} \max_{1 \le i \le n} V_i \right)$$

where V_1, \ldots, V_n are independent Uniform(0, 1) random variables.

- (c) Show that $\Phi^{-1}(u)$ is convex on [1/2, 1). Apply Jensen's inequality to the expression in (b) to obtain the bound $\mathbb{E}K_n \ge \Phi^{-1}(1-1/(2n+2))$.
- (d) Show that $\Phi^{-1}(1-t^{-1})/(2\log t)^{1/2} \to 1$ as $t \to \infty$.
- (e) Conclude from (a), (c), and (d) that $\mathbb{E}K_n/(2\log n)^{1/2} \to 1$ as $n \to \infty$.

2. Extreme value theory for the Gaussian. Let a_n and b_n be the extreme value scaling and centering constants for the maximum M_n of n independent standard Gaussian random variables.

- (a) Fix $x \in \mathbb{R}$ and let $x_n = x/a_n + b_n$. Show that $n \phi(x_n)/x_n \to e^{-x}$ as n tends to infinity. [In your calculations, identify and pay careful attention to the leading order terms.]
- (b) Using the result of part (a) and the standard Gaussian tail bound from an earlier homework, show that $n(1 \Phi(x_n)) \rightarrow e^{-x}$.
- (c) Use part (b) and the lemma from lecture to show that as n tends to infinity

$$\mathbb{P}(a_n(M_n - b_n) \le x) \to G(x) = e^{-e^{-x}}$$

- (d) Show that G(x) is the CDF of $-\log V$ where $V \sim \text{Exp}(1)$.
- 3. Let U_1, \ldots, U_n be independent $\text{Uniform}(0, \theta)$ random variables. Find $\mathbb{E}[\max_{1 \le j \le n} U_j]$.
- 4. Let $\{C_{\lambda} : \lambda \in \Lambda\}$ be convex sets. Show that the intersection $C = \bigcap_{\lambda \in \Lambda} C_{\lambda}$ is convex.

- 5. Show that the following subsets of \mathbb{R}^d are convex.
 - a. The emptyset
 - b. The hyperplane $H = \{x : x^t u = b\}$
 - c. The halfspace $H_+ = \{x : x^t u > b\}$
 - d. The ball $B(x_0, r) = \{x : ||x x_0|| \le r\}$

6. Show that if f_1, \ldots, f_k are convex functions defined on the same set, and w_1, \ldots, w_k are non-negative, then $f = \sum_{j=1}^k w_j f_j$ is convex.

7. Let $\{f_{\lambda} : \lambda \in \Lambda\}$ be convex functions defined on a common set C. Show that the supremum $f = \sup_{\lambda \in \Lambda} f_{\lambda}$ is convex.

8. Establish the following facts about the Gaussian mean width w(K) of a bounded set $K \subseteq \mathbb{R}^n$.

- (a) If $K_1 \subseteq K_2$ then $w(K_1) \leq w(K_2)$
- (b) $w(K) \ge 0$
- (c) If $A \in \mathbb{R}^{n \times n}$ is orthogonal then w(AK) = w(A)
- (d) For each $u \in \mathbb{R}^n$, w(K+u) = w(K)
- (e) $w(K) = w(\operatorname{conv}(K))$
- (f) $\sqrt{2/\pi} \operatorname{diam}(K) \le w(K) \le n^{1/2} \operatorname{diam}(K)$
- (g) $w(K) \leq 2 \mathbb{E} \sup_{x \in K} \langle x, V \rangle$ with $V \sim \mathcal{N}_n(0, I)$

9. Recall that the convex hull of a set $A \subseteq \mathbb{R}^d$, denoted $\operatorname{conv}(A)$, is the intersection of all convex sets C containing A. Show that $\operatorname{conv}(A)$ is equal to the set of all convex combinations $\sum_{i=1}^k \alpha_i x_i$, where $k \ge 1$ is finite, $x_1, \ldots, x_k \in A$, and the coefficients α_i are non-negative and sum to one.