STOR 655 Homework 10

1. Let X_{1}, \ldots, X_{n} be independent standard normal random variables. Here we identify upper and lower bounds for the expectation of $K_{n}:=\max _{1 \leq i \leq n}\left|X_{i}\right|$.
(a) Using the bound from class and the fact that $K_{n}=\max _{i}\left(X_{i},-X_{i}\right)$ show that $\mathbb{E} K_{n} \leq$ $(2 \log 2 n)^{1 / 2}$.
(b) Let $\Phi()$ be the CDF of the standard normal. Show that

$$
K_{n}=\Phi^{-1}\left(\frac{1}{2}+\frac{1}{2} \max _{1 \leq i \leq n} V_{i}\right)
$$

where V_{1}, \ldots, V_{n} are independent $\operatorname{Uniform}(0,1)$ random variables.
(c) Show that $\Phi^{-1}(u)$ is convex on $[1 / 2,1)$. Apply Jensen's inequality to the expression in (b) to obtain the bound $\mathbb{E} K_{n} \geq \Phi^{-1}(1-1 /(2 n+2))$.
(d) Show that $\Phi^{-1}\left(1-t^{-1}\right) /(2 \log t)^{1 / 2} \rightarrow 1$ as $t \rightarrow \infty$.
(e) Conclude from (a), (c), and (d) that $\mathbb{E} K_{n} /(2 \log n)^{1 / 2} \rightarrow 1$ as $n \rightarrow \infty$.
2. Extreme value theory for the Gaussian. Let a_{n} and b_{n} be the extreme value scaling and centering constants for the maximum M_{n} of n independent standard Gaussian random variables.
(a) Fix $x \in \mathbb{R}$ and let $x_{n}=x / a_{n}+b_{n}$. Show that $n \phi\left(x_{n}\right) / x_{n} \rightarrow e^{-x}$ as n tends to infinity. [In your calculations, identify and pay careful attention to the leading order terms.]
(b) Using the result of part (a) and the standard Gaussian tail bound from an earlier homework, show that $n\left(1-\Phi\left(x_{n}\right)\right) \rightarrow e^{-x}$.
(c) Use part (b) and the lemma from lecture to show that as n tends to infinity

$$
\mathbb{P}\left(a_{n}\left(M_{n}-b_{n}\right) \leq x\right) \rightarrow G(x)=e^{-e^{-x}}
$$

(d) Show that $G(x)$ is the CDF of $-\log V$ where $V \sim \operatorname{Exp}(1)$.
3. Let U_{1}, \ldots, U_{n} be independent Uniform $(0, \theta)$ random variables. Find $\mathbb{E}\left[\max _{1 \leq j \leq n} U_{j}\right]$.
4. Let $\left\{C_{\lambda}: \lambda \in \Lambda\right\}$ be convex sets. Show that the intersection $C=\cap_{\lambda \in \Lambda} C_{\lambda}$ is convex.
5. Show that the following subsets of \mathbb{R}^{d} are convex.
a. The emptyset
b. The hyperplane $H=\left\{x: x^{t} u=b\right\}$
c. The halfspace $H_{+}=\left\{x: x^{t} u>b\right\}$
d. The ball $B\left(x_{0}, r\right)=\left\{x:\left\|x-x_{0}\right\| \leq r\right\}$
6. Show that if f_{1}, \ldots, f_{k} are convex functions defined on the same set, and w_{1}, \ldots, w_{k} are non-negative, then $f=\sum_{j=1}^{k} w_{j} f_{j}$ is convex.
7. Let $\left\{f_{\lambda}: \lambda \in \Lambda\right\}$ be convex functions defined on a common set C. Show that the supremum $f=\sup _{\lambda \in \Lambda} f_{\lambda}$ is convex.
8. Establish the following facts about the Gaussian mean width $w(K)$ of a bounded set $K \subseteq \mathbb{R}^{n}$.
(a) If $K_{1} \subseteq K_{2}$ then $w\left(K_{1}\right) \leq w\left(K_{2}\right)$
(b) $w(K) \geq 0$
(c) If $A \in \mathbb{R}^{n \times n}$ is orthogonal then $w(A K)=w(A)$
(d) For each $u \in \mathbb{R}^{n}, w(K+u)=w(K)$
(e) $w(K)=w(\operatorname{conv}(K))$
(f) $\sqrt{2 / \pi} \operatorname{diam}(K) \leq w(K) \leq n^{1 / 2} \operatorname{diam}(K)$
(g) $w(K) \leq 2 \mathbb{E} \sup _{x \in K}\langle x, V\rangle$ with $V \sim \mathcal{N}_{n}(0, I)$
9. Recall that the convex hull of a set $A \subseteq \mathbb{R}^{d}$, denoted $\operatorname{conv}(A)$, is the intersection of all convex sets C containing A. Show that $\operatorname{conv}(A)$ is equal to the set of all convex combinations $\sum_{i=1}^{k} \alpha_{i} x_{i}$, where $k \geq 1$ is finite, $x_{1}, \ldots, x_{k} \in A$, and the coefficients α_{i} are non-negative and sum to one.

