STOR 655 Homework 6

1. Show that $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is upper semicontinuous if and only if the super-level sets $\{x: f(x) \geq \alpha\}$ are closed for every $\alpha \in \mathbb{R}$.
2. Show that if $f_{1}, f_{2}, \ldots: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are u.s.c. then so is $g(x)=\inf _{n} f_{n}(x)$.
3. Let X be a random variable with a finite variance and let $Y=\min (X, c)$ for some constant c. Show that the variance of Y exists and is less that or equal the variance of X. [Hint: By considering $Y-c$, show that the assertion is valid for every c if it is valid for $c=0$. For the case $c=0$, express X in terms of Y and $Z=\max (X, 0)$, and then consider the covariance of Y and Z.]
4. Let $\operatorname{Bin}(n, p)$ denote the binomial distribution with parameters $n \geq 1$ and $p \in[0,1]$. Show that for each $1 \leq k \leq n$ and each $p \in[0,1]$ that the following identity holds:

$$
P(\operatorname{Bin}(n, p) \geq k)=\frac{n!}{(k-1)!(n-k)!} \int_{0}^{p} u^{k-1}(1-u)^{n-k} d u
$$

Hint: Fix $1 \leq k \leq n$. Let $f(p)$ and $g(p)$ be, respectively, the left- and right-hand sides of the equation. Show that f, g are equal when $p=0$. Then show that $f^{\prime}(p)=g^{\prime}(p)$ for each p. To do this, write $f(p)$ as a sum, differentiate each summand, and then note that terms in successive summands cancel.
5. Recall that if $f: \mathcal{X} \rightarrow \mathbb{R}$ is a real-valued function then the argmax of f is the set of points in x at which f is maximized, $\arg \max _{x} f(x)=\left\{x: f(x)=\sup _{x^{\prime} \in A} f\left(x^{\prime}\right)\right\}$. The argmin of f is similarly defined.
(a) Let $f: A \rightarrow \mathbb{R}$ be defined on a set $A \subseteq \mathbb{R}$ by $f(x)=x^{2}$. Identify the value of

$$
\sup _{x \in A} f(x) \quad \text { and } \quad \underset{x \in A}{\arg \max } f(x)
$$

in each of the following cases: $A=[-2,2], A=(-2,2], A=(-2,2)$, and $A=(-3,2]$.
(b) Let A be a bounded subset of \mathbb{R}^{d}. Identify the values of $\inf _{x} f(x), \sup _{x} f(x), \arg \min _{x} f(x)$, and $\arg \max _{x} f(x)$ for the following function:

$$
f(x)=\inf _{y \in A}\|x-y\| .
$$

6. This problem shows how you can obtain inequalities for $\log (1+x)$ and $\log (1-x)$ from Taylor's theorem.
a. Expand the function $h(v)=\log v$ in a third order Taylor series around the point $v=1$. (Thus you will be expressing $h(1+x)$ in terms of $x, h(1), h^{\prime}(1), h^{\prime \prime}(1)$, and $h^{\prime \prime \prime}(u)$ for some u between 1 and $1+x$. Note that x may be negative.)
b. By examining the final term in the series, use part (a) to show that $\log (1+x) \geq x-x^{2} / 2$ for $x \geq 0$.
c. By examining the final term in the series, use part (a) to show that $\log (1-x) \leq$ $-x-x^{2} / 2$ for $0 \leq x<1$.
