STOR 655 Homework 5

1. Let $W_n \sim \chi_n^2$ be a chi-squared random variable with *n* degrees of freedom, and let $\chi_{n,\alpha}^2$ be the upper $1 - \alpha$ percentile of the χ_n^2 distribution.

(a) Following the arguments in class, find $\mathbb{E}W_n$ and $\operatorname{Var}(W_n)$, and show that

$$\frac{W_n - \mathbb{E}W_n}{\operatorname{Var}(W_n)^{1/2}} \Rightarrow \mathcal{N}(0, 1)$$

(b) Use part (a) of the problem to establish the (non-stochastic) relation

$$\frac{\chi_{n,\alpha}^2 - n}{\sqrt{n}} \to \sqrt{2}z_c$$

where z_{α} is the $1 - \alpha$ upper percentile of the standard normal. Hint: If the desired result fails to hold, then there is a subsequence $\{n_k\}$ along which the centered and scaled percentiles converge to a number greater than, or less than, $\sqrt{2}z_{\alpha}$. Use this to get a contradiction.

- 2. Establish the following linear algebra facts from class. Let $A, B \in \mathbb{R}^{n \times n}$.
 - (a) If A is a projection matrix then all of its eigenvalues are zero or one.
 - (b) If A is a projection matrix then rank(A) = tr(A).
 - (c) If A is a symmetric projection matrix then Av is orthogonal to v Av for every v.
- (d) $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$
- (e) $\operatorname{tr}(AB) = \operatorname{tr}(BA)$
- (f) If A > 0 then $A^{-1} > 0$.
- 3. Let $X_1, X_2, \ldots \in \mathbb{R}^d$ be i.i.d. random vectors with $\mathbb{E}X_i = \mu$ and $\operatorname{Var}(X_i) > 0$. Let

$$T_n^2 = (n-1)(\overline{X}_n - \mu)^t S_n^{-1}(\overline{X}_n - \mu)$$

be Hotelling's T^2 statistic, where $S_n = n^{-1} \sum_{i=1}^n (X_i - \overline{X}_n) (X_i - \overline{X}_n)^t$. Show as carefully as you can that $T_n^2 \Rightarrow \chi_d^2$. 4. Let the sample correlation coefficient r_n of a bivariate data set be defined as in class. Show that $1 \le r_n \le 1$.

5. Show that if $Q \in \mathbb{R}^{n \times n}$ is orthogonal then ||Qx|| = ||x|| for every x. What does this tell you about the real eigenvalues of Q? Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Use the spectral decomposition of A to show that

$$\sup_{x: x^T x = 1} x^T A x = \lambda_n$$

where λ_n is the largest eigenvalue of A. Deduce from this that

$$\sup_{x \neq 0} \frac{x^T A x}{x^T x} = \lambda_n.$$

Find a vector for which the inequality is satisfied with equality.