
Majority and Friendship Paradoxes



Majority Paradox

Example: Small town is considering a bond initiative in an upcoming
election. Some residents are in favor, some are against.

Consider a poll asking the following two questions:

I Are you for or against the initiative?

I Do you think the initiative will pass?

Note that

I Answer to the first question depends on the opinion of the resident only.

I Answer to the second question depends on the opinion of the residents
friends (and social/mainstream media they follow)

Upshot: Answers to the second question may be misleading/inaccurate



Social Network (from Wash. Post): Blue = For, Orange = Against

In this case, most residents are opposed to the initiative, but the majority of
residents think the initiative will pass.



Friendship Paradox

Informal: On average, individuals in a social network have fewer friends than
their friends do.

Formal: Let G = (V,E) be an undirected graph. Define

I A1(G) = average degree of vertices in G

I A2(G) = average degree of the neighbors of vertices in G

Then A1(G) ≤ A2(G).

If G is a social network, then

I A1(G) = average number of friends of individuals in network

I A2(G) = average number of friends of friends in network



Proof of Friendship Paradox

Recall: N(u) = neighbors of u in G, and d(u) = |N(u)| = degree of u in G.

Let |V | = n. Then we can write

A1(G) =
1

n

∑
u∈V

d(u) and A2(G) =

∑
u∈V

(∑
v∈N(u) d(v)

)
∑

u∈V |N(u)|

Fact: The average A2(G) =
∑

u∈V d
2(u) /

∑
u∈V d(u)

Rearranging, we find that

A1(G) ≤ A2(G) ←→

(
1

n

∑
u∈V

d(u)

)2

≤ 1

n

∑
u∈V

d2(u)



Basic Lemma

To complete the proof, we appeal to a simple inequality.

Lemma: If a1, . . . , an are real numbers then(
1

n

n∑
i=1

ai

)2

≤ 1

n

n∑
i=1

a2i

Proof: Homework.

In statistical terms this is a special case of the inequality (EX)2 ≤ EX2 for a
random variable X



Euler Paths



Euler Paths and Circuits

Definition: Let G = (V,E) be a simple graph.

I An Euler path in G is a simple path that contains every edge in E.

I An Euler circuit in G is a simple circuit that contains every edge in E.

Example: Let G represent the map of a small town

I vertices = intersections

I edges = streets

Can postal worker deliver mail to residents of the town without walking any
street twice?



Euler Paths and Circuits, cont.

Goal: Necessary and sufficient conditions for

I Euler paths in G

I Euler circuits in G

Punch line: There are simple conditions involving only the degree of the
vertices in G



Euler Circuits and Even Degree

Theorem: Let G = (V,E) be a connected multigraph with |V | ≥ 2. Then G
has an Euler circuit iff every vertex has even degree.

Proof sketch (⇐): Let k = 0 and let all edges in E be unmarked. Fix a
vertex u0 ∈ V and proceed as follows.

(A) If all edges e ∈ E containing uk are marked, then stop. Otherwise

I Select and mark an edge ek = {uk, v} ∈ E.

I Let uk+1 = v be the other endpoint of ek.

I Increase k by one and return to (A)

Let er = {ur, ur+1} be the last edge selected. Define the path

p = u0, u1, . . . , ur+1



Proof, cont.

Claim: Path p is a circuit from u0 to u0, that is, ur+1 = u0.

Let v 6= u0 be a vertex in p. Note:

I If # unmarked edges at v is ≥ 2, then when p enters v on one edge it
can leave on another, reducing the number of unmarked edges by 2.

As deg(v) is even, the number of unmarked edges at v is always

I ≥ 2, in which case p will return to v and leave v

I = 0, in which case p will not return to v

Upshot: Path p cannot end at v, so it must terminate where it began, at u0.



Proof, cont.

Next Steps: If the path p contains every edge in E, then it is the desired
Euler circuit. Otherwise,

I Find a circuit p̃ in the subgraph G1 of G generated by the
edges E1 = E \ {edges in p}.

I Splice p and p̃ together into a single circuit.

I Continue until all edges in E are used.



Euler Paths

Theorem: A connected graph G = (V,E) has an Euler path, but not an Euler
circuit, iff G has exactly two vertices of odd degree.



Hamilton Paths and Circuits



Hamilton Paths and Circuits

Definition: Let G = (V,E) be a simple graph.

I A Hamilton path in G is a simple path that passes through every
vertex exactly once.

I A Hamilton circuit in G is a Hamilton path that begins and ends
at the same vertex.

Example: Let G represent the airline network for a region of the U.S.

A Hamilton path in G represents the flight itinerary of a salesperson who
wishes to each city in the network once on a business trip.

Example: If n ≥ 3 the complete graph Kn and the n-cycle Cn have Hamilton
circuits.



Conditions for Hamilton Circuits

Theorem: Let G = (V,E) be simple with n ≥ 3 vertices. Then G has a
Hamilton circuit if for every u, v ∈ V

{u, v} 6∈ E ⇒ deg(u) + deg(v) ≥ n

Note: Theorem gives sufficient conditions for a Hamilton circuit. Simple
necessary conditions are not known.



Planar Graphs



Planar Graphs

Definition: A graph G = (V,E) is planar if it can be drawn in the plane in
such a way that no two edges intersect (except at vertices). Any such
drawing is called a planar representation of G.

Note

I A planar graph G can have many representations.

I Every planar representation divides the plane into a finite number of
disjoint regions, one of which is unbounded.

Fact: If e = {u, v} is not a cut edge of a graph G then there is a circuit c
from u to u beginning with e.



Euler’s Formula

Theorem: Let G = (V,E) be a simple connected planar graph with |E| = m
and |V | = n. Then the number of regions r in any planar representation of G
is r = m− n+ 2.

Proof of Theorem: By strong induction on m = number of edges in G.

Basis: If m = 0 then G is a single isolated vertex. In particular, G is
connected, n = 1, and r = 1 = m− n+ 2.

Induction: Let m ≥ 1.

I Assume formula holds for graphs with at most m− 1 edges.

I Consider graph G with |E| = m and |V | = n.

I Select and remove one edge e = {u, v} from G



Proof of Euler’s Formula

Case 1: Edge e is a cut edge of G.

Idea: G \ e has connected components G1 and G2.

I G1, G2 are simple and connected.

I m = m1 +m2 + 1 and n = n1 + n2

I G planar implies G1, G2 planar

I The unbounded regions of G1, G2 overlap, but the other regions don’t.
Thus r = r1 + r2 − 1.



Proof of Euler’s Formula

Case 2: Edge e is a not cut edge of G.

Idea: Using Fact, let c = u, v, . . . , u be the shortest simple cycle in G from
u to u beginning with edge e.

I As c is simple and no two edges in G intersect, c encloses one or more
regions of G.

I As c is a shortest cycle, it encloses a single region R.

I Removing e merges R with the region on the opposite side of e, reducing
r by 1.



Examples

Example: A planar graph with r = 1 has no cycles.

Example: A connected planar graph G has 10 vertices and 15 edges. How
many regions are there in a planar representation of G?

Example: The planar representation of a graph G has 4 regions. If G has 11
vertices, how many edges does it have?



Degree of a Region

Definition: Let R be a region of a connected simple planar graph. The
degree of R is the number of edges traversed while walking along the
boundary of R, with the interior to your left.

Note

I In the definition, edges can be traversed more than once

I The sum of deg(R) over the regions R of G counts every
edge twice, so

r∑
j=1

deg(Rj) = 2m



Degree of a Region, cont.

Fact: If G = (V,E) is connected, planar, and simple with |V | = n ≥ 3
then |E| = m ≤ 3n− 6.

Corollary: The graph K5 is not planar.

Corollary: If G is connected, planar, and simple, then there is a vertex
v ∈ V with deg(v) ≤ 5.



Graph Coloring



Graph Coloring

Definition: A coloring of a simple graph G is an assignment of colors to each
vertex with the property that no adjacent vertices have the same color.

Definition: The chromatic number of a graph G, denoted by χ(G), is the
minimum number of colors needed for a coloring of the graph.

Example: Graph G with wedding guests as vertices, and edges between
guests who do not get along.

I Then χ(G) = minimal number of tables at the reception needed to
guarantee that everyone seated at a table gets along.



Graph Coloring, cont.

Example: Graph G with classes as vertices, and edges between two classes
if they have one or more students in common.

I Then χ(G) = minimal number of final exam time slots needed to avoid
scheduling conflicts.

Example: If G is bipartite then χ(G) = 2, and conversely.

Example: If Kn is the complete graph on n vertices, then χ(Kn) = n.

Example: If Cn is an n-cycle with n even then χ(Cn) = 2.



Famous Result

The Four Color Theorem: If G is planar then χ(G) ≤ 4.



Looking Backwards and Forwards



STOR 215: Introduction to Mathematical Reasoning

I. Logic: language of mathematical reasoning and higher mathematics

I compound propositions, logical operations, quantifiers

II. Basic objects of mathematical analysis

I sets, summations, functions

III. First look at specific subject areas

I number theory, combinatorics, graphs/networks



STOR 215

Where are these ideas used?

I linear algebra

I advanced calculus

I discrete mathematics

I econometrics

I probability

I optimization

I analysis of algorithms

I machine learning

I stochastic modeling



The End


