Majority and Friendship Paradoxes

Majority Paradox

Example: Small town is considering a bond initiative in an upcoming election. Some residents are in favor, some are against.

Consider a poll asking the following two questions:

- Are you for or against the initiative?
- Do you think the initiative will pass?

Note that

- Answer to the first question depends on the opinion of the resident only.
- Answer to the second question depends on the opinion of the residents friends (and social/mainstream media they follow)

Upshot: Answers to the second question may be misleading/inaccurate

Social Network (from Wash. Post): Blue = For, Orange = Against

In this case, most residents are opposed to the initiative, but the majority of residents think the initiative will pass.

Friendship Paradox

Informal: On average, individuals in a social network have fewer friends than their friends do.

Formal: Let $G=(V, E)$ be an undirected graph. Define

- $A_{1}(G)=$ average degree of vertices in G
- $A_{2}(G)=$ average degree of the neighbors of vertices in G

Then $A_{1}(G) \leq A_{2}(G)$.

If G is a social network, then

- $A_{1}(G)=$ average number of friends of individuals in network
- $A_{2}(G)=$ average number of friends of friends in network

Proof of Friendship Paradox

Recall: $N(u)=$ neighbors of u in G, and $d(u)=|N(u)|=$ degree of u in G.

Let $|V|=n$. Then we can write

$$
A_{1}(G)=\frac{1}{n} \sum_{u \in V} d(u) \quad \text { and } \quad A_{2}(G)=\frac{\sum_{u \in V}\left(\sum_{v \in N(u)} d(v)\right)}{\sum_{u \in V}|N(u)|}
$$

Fact: The average $A_{2}(G)=\sum_{u \in V} d^{2}(u) / \sum_{u \in V} d(u)$

Rearranging, we find that

$$
A_{1}(G) \leq A_{2}(G) \longleftrightarrow\left(\frac{1}{n} \sum_{u \in V} d(u)\right)^{2} \leq \frac{1}{n} \sum_{u \in V} d^{2}(u)
$$

Basic Lemma

To complete the proof, we appeal to a simple inequality.

Lemma: If a_{1}, \ldots, a_{n} are real numbers then

$$
\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}\right)^{2} \leq \frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}
$$

Proof: Homework.
In statistical terms this is a special case of the inequality $(E X)^{2} \leq E X^{2}$ for a random variable X

Euler Paths

Euler Paths and Circuits

Definition: Let $G=(V, E)$ be a simple graph.

- An Euler path in G is a simple path that contains every edge in E.
- An Euler circuit in G is a simple circuit that contains every edge in E.

Example: Let G represent the map of a small town

- vertices $=$ intersections
- edges $=$ streets

Can postal worker deliver mail to residents of the town without walking any street twice?

Euler Paths and Circuits, cont.

Goal: Necessary and sufficient conditions for

- Euler paths in G
- Euler circuits in G

Punch line: There are simple conditions involving only the degree of the vertices in G

Euler Circuits and Even Degree

Theorem: Let $G=(V, E)$ be a connected multigraph with $|V| \geq 2$. Then G has an Euler circuit iff every vertex has even degree.

Proof sketch (\Leftarrow) : Let $k=0$ and let all edges in E be unmarked. Fix a vertex $u_{0} \in V$ and proceed as follows.
(A) If all edges $e \in E$ containing u_{k} are marked, then stop. Otherwise

- Select and mark an edge $e_{k}=\left\{u_{k}, v\right\} \in E$.
- Let $u_{k+1}=v$ be the other endpoint of e_{k}.
- Increase k by one and return to (A)

Let $e_{r}=\left\{u_{r}, u_{r+1}\right\}$ be the last edge selected. Define the path

$$
p=u_{0}, u_{1}, \ldots, u_{r+1}
$$

Proof, cont.

Claim: Path p is a circuit from u_{0} to u_{0}, that is, $u_{r+1}=u_{0}$.
Let $v \neq u_{0}$ be a vertex in p. Note:

- If \# unmarked edges at v is ≥ 2, then when p enters v on one edge it can leave on another, reducing the number of unmarked edges by 2 .

As $\operatorname{deg}(v)$ is even, the number of unmarked edges at v is always

- ≥ 2, in which case p will return to v and leave v
- $=0$, in which case p will not return to v

Upshot: Path p cannot end at v, so it must terminate where it began, at u_{0}.

Proof, cont.

Next Steps: If the path p contains every edge in E, then it is the desired Euler circuit. Otherwise,

- Find a circuit \tilde{p} in the subgraph G_{1} of G generated by the edges $E_{1}=E \backslash\{$ edges in $p\}$.
- Splice p and \tilde{p} together into a single circuit.
- Continue until all edges in E are used.

Euler Paths

Theorem: A connected graph $G=(V, E)$ has an Euler path, but not an Euler circuit, iff G has exactly two vertices of odd degree.

Hamilton Paths and Circuits

Hamilton Paths and Circuits

Definition: Let $G=(V, E)$ be a simple graph.

- A Hamilton path in G is a simple path that passes through every vertex exactly once.
- A Hamilton circuit in G is a Hamilton path that begins and ends at the same vertex.

Example: Let G represent the airline network for a region of the U.S.
A Hamilton path in G represents the flight itinerary of a salesperson who wishes to each city in the network once on a business trip.

Example: If $n \geq 3$ the complete graph K_{n} and the n-cycle C_{n} have Hamilton circuits.

Conditions for Hamilton Circuits

Theorem: Let $G=(V, E)$ be simple with $n \geq 3$ vertices. Then G has a Hamilton circuit if for every $u, v \in V$

$$
\{u, v\} \notin E \Rightarrow \operatorname{deg}(u)+\operatorname{deg}(v) \geq n
$$

Note: Theorem gives sufficient conditions for a Hamilton circuit. Simple necessary conditions are not known.

Planar Graphs

Planar Graphs

Definition: A graph $G=(V, E)$ is planar if it can be drawn in the plane in such a way that no two edges intersect (except at vertices). Any such drawing is called a planar representation of G.

Note

- A planar graph G can have many representations.
- Every planar representation divides the plane into a finite number of disjoint regions, one of which is unbounded.

Fact: If $e=\{u, v\}$ is not a cut edge of a graph G then there is a circuit c from u to u beginning with e.

Euler's Formula

Theorem: Let $G=(V, E)$ be a simple connected planar graph with $|E|=m$ and $|V|=n$. Then the number of regions r in any planar representation of G is $r=m-n+2$.

Proof of Theorem: By strong induction on $m=$ number of edges in G.
Basis: If $m=0$ then G is a single isolated vertex. In particular, G is connected, $n=1$, and $r=1=m-n+2$.

Induction: Let $m \geq 1$.

- Assume formula holds for graphs with at most $m-1$ edges.
- Consider graph G with $|E|=m$ and $|V|=n$.
- Select and remove one edge $e=\{u, v\}$ from G

Proof of Euler's Formula

Case 1: Edge e is a cut edge of G.

Idea: $G \backslash e$ has connected components G_{1} and G_{2}.

- G_{1}, G_{2} are simple and connected.
- $m=m_{1}+m_{2}+1$ and $n=n_{1}+n_{2}$
- G planar implies G_{1}, G_{2} planar
- The unbounded regions of G_{1}, G_{2} overlap, but the other regions don't. Thus $r=r_{1}+r_{2}-1$.

Proof of Euler's Formula

Case 2: Edge e is a not cut edge of G.

Idea: Using Fact, let $c=u, v, \ldots, u$ be the shortest simple cycle in G from u to u beginning with edge e.

- As c is simple and no two edges in G intersect, c encloses one or more regions of G.
- As c is a shortest cycle, it encloses a single region R.
- Removing e merges R with the region on the opposite side of e, reducing r by 1 .

Examples

Example: A planar graph with $r=1$ has no cycles.

Example: A connected planar graph G has 10 vertices and 15 edges. How many regions are there in a planar representation of G ?

Example: The planar representation of a graph G has 4 regions. If G has 11 vertices, how many edges does it have?

Degree of a Region

Definition: Let R be a region of a connected simple planar graph. The degree of R is the number of edges traversed while walking along the boundary of R, with the interior to your left.

Note

- In the definition, edges can be traversed more than once
- The sum of $\operatorname{deg}(R)$ over the regions R of G counts every edge twice, so

$$
\sum_{j=1}^{r} \operatorname{deg}\left(R_{j}\right)=2 m
$$

Degree of a Region, cont.

Fact: If $G=(V, E)$ is connected, planar, and simple with $|V|=n \geq 3$ then $|E|=m \leq 3 n-6$.

Corollary: The graph K_{5} is not planar.

Corollary: If G is connected, planar, and simple, then there is a vertex $v \in V$ with $\operatorname{deg}(v) \leq 5$.

Graph Coloring

Graph Coloring

Definition: A coloring of a simple graph G is an assignment of colors to each vertex with the property that no adjacent vertices have the same color.

Definition: The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors needed for a coloring of the graph.

Example: Graph G with wedding guests as vertices, and edges between guests who do not get along.

- Then $\chi(G)=$ minimal number of tables at the reception needed to guarantee that everyone seated at a table gets along.

Graph Coloring, cont.

Example: Graph G with classes as vertices, and edges between two classes if they have one or more students in common.

- Then $\chi(G)=$ minimal number of final exam time slots needed to avoid scheduling conflicts.

Example: If G is bipartite then $\chi(G)=2$, and conversely.

Example: If K_{n} is the complete graph on n vertices, then $\chi\left(K_{n}\right)=n$.

Example: If C_{n} is an n-cycle with n even then $\chi\left(C_{n}\right)=2$.

Famous Result

The Four Color Theorem: If G is planar then $\chi(G) \leq 4$.

Looking Backwards and Forwards

STOR 215: Introduction to Mathematical Reasoning

I. Logic: language of mathematical reasoning and higher mathematics

- compound propositions, logical operations, quantifiers
II. Basic objects of mathematical analysis
- sets, summations, functions
III. First look at specific subject areas
- number theory, combinatorics, graphs/networks

STOR 215

Where are these ideas used?

- linear algebra
- advanced calculus
- discrete mathematics
- econometrics
- probability
- optimization
- analysis of algorithms
- machine learning
- stochastic modeling

The End

