Paths, Circuits, and Connected Graphs

Paths and Circuits

Definition: Let $G=(V, E)$ be an undirected graph, vertices $u, v \in V$

- A path of length n from u to v is a sequence of edges

$$
e_{i}=\left\{u_{i-1}, u_{i}\right\} \in E \text { for } i=1, \ldots, n
$$

where initial vertex $u_{0}=u$ and final vertex $u_{n}=v$.

- For simple graph G, represent path via vertex sequence $u_{0}, u_{1}, \ldots, u_{n}$.
- A path is a circuit if $u=v$.
- A path is simple if no edge e_{i} appears more than once (a vertex can appear more than once)

Erdős Number

Example: Collaboration graph with

- $V=$ all mathematicians
- $E=$ pairs of coauthors

Definition: The Erdős number of a mathematician u, denoted Erdős (u), is the length of the shortest path from him/her to mathematician Paul Erdős.

- Erdős $(u)=0$ iff u is Erdős
- Erdős $(u)=1$ iff u has written a paper with Erdős
- Erdős $(u)=2$ iff u has not written a paper with Erdős, but has written a paper with a co-author of Erdős.

As of 2006 number of mathematicians with Erdős number 1, 2, and 4 was $504,6,593$, and 83 K .

Connected Graphs

Definition: A graph $G=(V, E)$ is connected if there is a path between every two distinct vertices in V.

Connectedness important in

- Computer networks (access and security)
- Transportation networks (can't get there from here)
- Social networks (disease transmission, gossip)

Connected Graphs and Simple Paths

Theorem: If $G=(V, E)$ is undirected and connected, then there exists a simple path between every pair of vertices in V.

Proof: Fix $u, v \in V$ with $u \neq v$. Let

$$
P=\{\text { all paths } p \text { between } u \text { and } v \text { in } G\}
$$

By assumption $P \neq \emptyset$, as G connected. Let

$$
p=u_{0}, u_{1}, \ldots, u_{n} \text { with } u_{0}=u, u_{n}=v
$$

be the vertex sequence of a path $p \in P$ with smallest length n.

Claim: path p is simple.

Connected Components

Connected Components

Definition: A connected component of a graph $G=(V, E)$ is a maximal connected subgraph, i.e., a graph H such that

- $H \leq G$
- H is connected
- No edge in G connects $V(H)$ and $\overline{V(H)}$

Note: The last condition equivalent to

- If $H \leq H^{\prime} \leq G$ and H^{\prime} is not equal to H, then H^{\prime} is not connected.

Connectivity, cont.

Basic Facts: Let $G=(V, E)$ be an undirected graph

- If G is connected, then it has one connected component (itself)
- G can be expressed as a disjoint union of its connected components
- There is a path between vertices $u, v \in V$ if and only if they belong to the same connected component of G

Definition: Let $G=(V, E)$ be an undirected graph

- $v \in V$ is a cut vertex if removing v and all edges incident on it increases the number of connected components in G
- $e \in E$ is a cut edge if removing it increases the number of connected components in G

Paths and Isomorphisms

Given: Isomorphic graphs G_{1}, G_{2} with isomorphism f. Note that path

$$
p=u_{0}, u_{1}, \ldots, u_{n}
$$

in graph G_{1} corresponds to path

$$
\tilde{p}=f\left(u_{0}\right), f\left(u_{1}\right), \ldots, f\left(u_{n}\right)
$$

in graph G_{2} and conversely. Moreover, definition of f ensures

- p simple $\Leftrightarrow \tilde{p}$ simple
- p circuit $\Leftrightarrow \tilde{p}$ circuit

Upshot: For $k \geq 3$ property $P_{k}(G)=G$ has a simple circuit of length k is a graph invariant. Useful tool to determine when two graphs are not isomorphic

Counting Paths with the Adjacency Matrix

Theorem: Let G be an undirected graph with vertices v_{1}, \ldots, v_{n} and adj. matrix A. Then \# paths of length r from v_{i} to $v_{j}=(i, j)$ entry of A^{r}.

Proof: Induction on r.

Basis step: Let $r=1$. Then $A^{r}=A$ and $a_{i j}=\#$ edges between v_{i} and v_{j}, which is the number of length 1 paths from v_{i} to v_{j}

Induction step: Assume result is true for some $r \geq 1$. Note that $A^{r+1}=B A$ where $B=A^{r}$. Thus

$$
\left(A^{r+1}\right)_{i j}=(B A)_{i j}=\sum_{k=1}^{n} b_{i k} a_{k j}
$$

Majority and Friendship Paradoxes

Majority Paradox

Example: Small town is considering a bond initiative in an upcoming election. Some residents are in favor, some are against.

Consider a poll asking the following two questions:

- Are you for or against the initiative?
- Do you think the initiative will pass?

Note that

- Answer to the first question depends on the opinion of the resident only.
- Answer to the second question depends on the opinion of the residents friends (and social/mainstream media they follow)

Upshot: Answers to the second question may be misleading/inaccurate

Social Network (from Wash. Post): Blue = For, Orange = Against

In this case, most residents are opposed to the initiative, but the majority of residents think the initiative will pass.

Friendship Paradox

Informal: On average, individuals in a social network have fewer friends than their friends do.

Formal: Let $G=(V, E)$ be an undirected graph. Define

- $A_{1}(G)=$ average degree of vertices in G
- $A_{2}(G)=$ average degree of the neighbors of vertices in G

Then $A_{1}(G) \leq A_{2}(G)$.

If G is a social network, then

- $A_{1}(G)=$ average number of friends of individuals in network
- $A_{2}(G)=$ average number of friends of friends in network

Proof of Friendship Paradox

Recall: $N(u)=$ neighbors of u in G, and $d(u)=|N(u)|=$ degree of u in G.

Let $|V|=n$. Then we can write

$$
A_{1}(G)=\frac{1}{n} \sum_{u \in V} d(u) \quad \text { and } \quad A_{2}(G)=\frac{\sum_{u \in V}\left(\sum_{v \in N(u)} d(v)\right)}{\sum_{u \in V}|N(u)|}
$$

Fact: The average $A_{2}(G)=\sum_{u \in V} d^{2}(u) / \sum_{u \in V} d(u)$

Rearranging, we find that

$$
A_{1}(G) \leq A_{2}(G) \longleftrightarrow\left(\frac{1}{n} \sum_{u \in V} d(u)\right)^{2} \leq \frac{1}{n} \sum_{u \in V} d^{2}(u)
$$

Basic Lemma

To complete the proof, we appeal to a simple inequality.

Lemma: If a_{1}, \ldots, a_{n} are real numbers then

$$
\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}\right)^{2} \leq \frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}
$$

Proof: Homework.
In statistical terms this is a special case of the inequality $(E X)^{2} \leq E X^{2}$ for a random variable X

Euler Paths

Euler Paths and Circuits

Definition: Let $G=(V, E)$ be a simple graph.

- An Euler path in G is a simple path that contains every edge in E.
- An Euler circuit in G is a simple circuit that contains every edge in E.

Example: Let G represent the map of a small town

- vertices $=$ intersections
- edges $=$ streets

Can postal worker deliver mail to residents of the town without walking any street twice?

Euler Paths and Circuits, cont.

Goal: Necessary and sufficient conditions for

- Euler paths in G
- Euler circuits in G

Punch line: There are simple conditions involving only the degree of the vertices in G

Euler Circuits and Even Degree

Theorem: Let $G=(V, E)$ be connected with $|V| \geq 2$. Then G has an Euler circuit iff every vertex has even degree.

Proof sketch (\Leftarrow) : Fix $u_{0} \in V$ and let $k=0$. Proceed as follows.
(A) If no edge $e \in E$ contains u_{k} then stop. Otherwise

- Select an edge $e_{k}=\left\{u_{k}, v\right\} \in E$
- Let $u_{k+1}=v$ be the other endpoint of e_{k}
- Remove e_{k} from E
- Increase k by one and return to (A)

Let $e_{r}=\left\{u_{r}, u_{r+1}\right\}$ be the last edge selected. Define the path

$$
p=u_{0}, u_{1}, \ldots, u_{r+1}
$$

Fact 2, cont.

Claim: Path p is a circuit from u_{0} to u_{0}, i.e., $u_{r+1}=u_{0}$.

Note: If p contains every edge in E, it is the desired Euler circuit. Otherwise,

- Find a circuit \tilde{p} in the subgraph G_{1} of G generated by the edges $E_{1}=E \backslash\{$ edges in $p\}$.
- Splice p and \tilde{p} together into a single circuit.
- Continue until all edges in E are used.

Euler Paths

Theorem: A connected graph $G=(V, E)$ has an Euler path, but not an Euler circuit, iff G has exactly two vertices of odd degree.

