Paths, Circuits, and Connected Graphs

Paths and Circuits

Definition: Let G = (V, E) be an undirected graph, vertices $u, v \in V$

► A *path* of length *n* from *u* to *v* is a sequence of edges

$$e_i = \{u_{i-1}, u_i\} \in E \text{ for } i = 1, \dots, n$$

where initial vertex $u_0 = u$ and final vertex $u_n = v$.

- For simple graph G, represent path via vertex sequence u_0, u_1, \ldots, u_n .
- A path is a *circuit* if u = v.
- ► A path is *simple* if no edge *e_i* appears more than once (a vertex can appear more than once)

Erdős Number

Example: Collaboration graph with

- V = all mathematicians
- E =pairs of coauthors

Definition: The Erdős number of a mathematician u, denoted Erdős(u), is the length of the shortest path from him/her to mathematician Paul Erdős.

- Erdős(u) = 0 iff u is Erdős
- Erdős(u) = 1 iff u has written a paper with Erdős
- Erdős(u) = 2 iff u has not written a paper with Erdős, but has written a paper with a co-author of Erdős.

As of 2006 number of mathematicians with Erdős number 1, 2, and 4 was 504, 6,593, and 83K.

Connected Graphs

Definition: A graph G = (V, E) is *connected* if there is a path between every two distinct vertices in V.

Connectedness important in

- Computer networks (access and security)
- Transportation networks (can't get there from here)
- Social networks (disease transmission, gossip)

Connected Graphs and Simple Paths

Theorem: If G = (V, E) is undirected and connected, then there exists a simple path between every pair of vertices in *V*.

Proof: Fix $u, v \in V$ with $u \neq v$. Let

 $P = \{ all paths p between u and v in G \}$

By assumption $P \neq \emptyset$, as *G* connected. Let

 $p = u_0, u_1, \dots, u_n$ with $u_0 = u, u_n = v$

be the vertex sequence of a path $p \in P$ with *smallest length* n.

Claim: path p is simple.

Connected Components

Connected Components

Definition: A *connected component* of a graph G = (V, E) is a maximal connected subgraph, i.e., a graph H such that

- $\blacktriangleright \ H \leq G$
- H is connected
- No edge in G connects V(H) and $\overline{V(H)}$

Note: The last condition equivalent to

• If $H \leq H' \leq G$ and H' is not equal to H, then H' is not connected.

Connectivity, cont.

Basic Facts: Let G = (V, E) be an undirected graph

- ▶ If G is connected, then it has one connected component (itself)
- G can be expressed as a disjoint union of its connected components
- There is a path between vertices $u, v \in V$ if and only if they belong to the same connected component of G

Definition: Let G = (V, E) be an undirected graph

- $v \in V$ is a *cut vertex* if removing v and all edges incident on it increases the number of connected components in G
- $e \in E$ is a *cut edge* if removing it increases the number of connected components in G

Paths and Isomorphisms

Given: Isomorphic graphs G_1, G_2 with isomorphism f. Note that path

$$p = u_0, u_1, \ldots, u_n$$

in graph G_1 corresponds to path

$$\tilde{p} = f(u_0), f(u_1), \dots, f(u_n)$$

in graph G_2 and conversely. Moreover, definition of f ensures

- $p \text{ simple} \Leftrightarrow \tilde{p} \text{ simple}$
- p circuit $\Leftrightarrow \tilde{p}$ circuit

Upshot: For $k \ge 3$ property $P_k(G) = G$ has a simple circuit of length k is a graph invariant. Useful tool to determine when two graphs are not isomorphic

Counting Paths with the Adjacency Matrix

Theorem: Let *G* be an undirected graph with vertices v_1, \ldots, v_n and adj. matrix *A*. Then # paths of length *r* from v_i to $v_j = (i, j)$ entry of A^r .

Proof: Induction on *r*.

Basis step: Let r = 1. Then $A^r = A$ and $a_{ij} = \#$ edges between v_i and v_j , which is the number of length 1 paths from v_i to v_j

Induction step: Assume result is true for some $r \ge 1$. Note that $A^{r+1} = BA$ where $B = A^r$. Thus

$$(A^{r+1})_{ij} = (BA)_{ij} = \sum_{k=1}^{n} b_{ik} a_{kj}$$

Majority and Friendship Paradoxes

Majority Paradox

Example: Small town is considering a bond initiative in an upcoming election. Some residents are in favor, some are against.

Consider a poll asking the following two questions:

- Are you for or against the initiative?
- Do you think the initiative will pass?

Note that

- Answer to the first question depends on the opinion of the resident only.
- Answer to the second question depends on the opinion of the residents friends (and social/mainstream media they follow)

Upshot: Answers to the second question may be misleading/inaccurate

Social Network (from Wash. Post): Blue = For, Orange = Against

In this case, most residents are opposed to the initiative, but the majority of residents think the initiative will pass.

Friendship Paradox

Informal: On average, individuals in a social network have fewer friends than their friends do.

Formal: Let G = (V, E) be an undirected graph. Define

- $A_1(G)$ = average degree of vertices in G
- $A_2(G)$ = average degree of the neighbors of vertices in G

Then $A_1(G) \leq A_2(G)$.

If G is a social network, then

- $A_1(G)$ = average number of friends of individuals in network
- $A_2(G)$ = average number of friends of friends in network

Proof of Friendship Paradox

Recall: N(u) = neighbors of u in G, and d(u) = |N(u)| = degree of u in G.

Let |V| = n. Then we can write

$$A_1(G) = \frac{1}{n} \sum_{u \in V} d(u) \text{ and } A_2(G) = \frac{\sum_{u \in V} \left(\sum_{v \in N(u)} d(v) \right)}{\sum_{u \in V} |N(u)|}$$

Fact: The average $A_2(G) = \sum_{u \in V} d^2(u) / \sum_{u \in V} d(u)$

Rearranging, we find that

$$A_1(G) \le A_2(G) \longleftrightarrow \left(\frac{1}{n} \sum_{u \in V} d(u)\right)^2 \le \frac{1}{n} \sum_{u \in V} d^2(u)$$

Basic Lemma

To complete the proof, we appeal to a simple inequality.

Lemma: If a_1, \ldots, a_n are real numbers then

$$\left(\frac{1}{n}\sum_{i=1}^{n}a_i\right)^2 \le \frac{1}{n}\sum_{i=1}^{n}a_i^2$$

Proof: Homework.

In statistical terms this is a special case of the inequality $(EX)^2 \leq EX^2$ for a random variable X

Euler Paths

Euler Paths and Circuits

Definition: Let G = (V, E) be a simple graph.

- An *Euler* path in G is a simple path that contains every edge in E.
- ▶ An *Euler* circuit in *G* is a simple circuit that contains every edge in *E*.

Example: Let G represent the map of a small town

- vertices = intersections
- edges = streets

Can postal worker deliver mail to residents of the town without walking any street twice?

Goal: Necessary and sufficient conditions for

- Euler paths in G
- ▶ Euler circuits in G

Punch line: There are simple conditions involving only the degree of the vertices in G

Euler Circuits and Even Degree

Theorem: Let G = (V, E) be connected with $|V| \ge 2$. Then G has an Euler circuit iff every vertex has even degree.

Proof sketch (\Leftarrow): Fix $u_0 \in V$ and let k = 0. Proceed as follows.

(A) If no edge $e \in E$ contains u_k then *stop*. Otherwise

- Select an edge $e_k = \{u_k, v\} \in E$
- Let $u_{k+1} = v$ be the other endpoint of e_k
- Remove e_k from E
- Increase k by one and return to (A)

Let $e_r = \{u_r, u_{r+1}\}$ be the last edge selected. Define the path

$$p = u_0, u_1, \ldots, u_{r+1}$$

Fact 2, cont.

Claim: Path *p* is a circuit from u_0 to u_0 , i.e., $u_{r+1} = u_0$.

Note: If *p* contains every edge in *E*, it is the desired Euler circuit. Otherwise,

- Find a circuit p̃ in the subgraph G₁ of G generated by the edges E₁ = E \ {edges in p}.
- Splice p and \tilde{p} together into a single circuit.
- ► Continue until all edges in *E* are used.

Theorem: A connected graph G = (V, E) has an Euler path, but not an Euler circuit, iff *G* has exactly two vertices of odd degree.