Special Graphs

Special Graphs

Complete graph on n vertices. For $n \geq 1, K_{n}=(V, E)$ defined by

- $V=\left\{v_{1}, \ldots, v_{n}\right\}$
- $E=\left\{\left\{v_{i}, v_{j}\right\}: 1 \leq i<j \leq n\right\}$

Note $|E|=\binom{n}{2}$ maximal number of possible edges for a simple graph

Cycle of length n. For $n \geq 1, C_{n}=(V, E)$ defined by

- $V=\left\{v_{1}, \ldots, v_{n}\right\}$
- $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{n-1}, v_{n}\right\},\left\{v_{n}, v_{1}\right\}\right\}$

Special Graphs

The n-star. For $n \geq 1, S_{n}=(V, E)$ defined by

- $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$
- $E=\left\{\left\{v_{0}, v_{j}\right\}: 1 \leq j \leq n\right\}$

The n-dimensional cube. For $n \geq 1, Q_{n}=(V, E)$ defined by

- $V=\{0,1\}^{n}$
- $E=\left\{\left\{b_{1}, b_{2}\right\}: b_{1}, b_{2}\right.$ differ in only one position $\}$

Bipartite Graphs

Definition: A simple graph $G=(V, E)$ is bipartite if there exist V_{1}, V_{2} s.t.

- $V=V_{1} \cup V_{2}$
- $V_{1} \cap V_{2}=\emptyset$
- If $e=\{u, v\} \in E$ then $u \in V_{1}$ and $v \in V_{2}$ or vice versa.

Terminology: V_{1}, V_{2} is a bipartition of V

Idea: All edges in G are between V_{1} and V_{2}. There are no edges between vertices in V_{1} or between vertices in V_{2}.

Examples

Example: C_{4} is bipartite, but $C_{3}=K_{3}$ is not bipartite.

Fact: Graph G is bipartite if one can assign each vertex $v \in V$ to one of two colors such that no edge connects two vertices of the same color.

Definition: $K_{m, n}=$ complete bipartite graph with vertex set partition $V=V_{1} \cup V_{2}$ with $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$.

Matching and Bipartite Graphs

Example 1: Dance with n girls and n boys. Each girl knows some subset of the boys, and vice versa. (Assume that G knows B iff B knows G.)

Summary provided by a bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$ with

- $V_{1}=$ set of girls, $V_{2}=$ set of boys
- $\{u, v\} \in E$ if and only if girl u knows boy v

Q: Can we group dancers into non-overlapping (boy, girl) pairs so that everyone dances with someone they know?

Matching and Bipartite Graphs

Example 2: Government needs to assign m agents to n overseas posts. Each agent lists acceptable posts.

Summary provided by a bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$ with

- $V_{1}=$ set of agents, $V_{2}=$ set of posts
- $\{u, v\} \in E$ if and only if agent u finds post v acceptable

Q: Can we assign agents to posts so that every agent assigned to a different post that is acceptable to them? Note, requires $n \geq m$

Complete Matchings

Definition: Bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$ has a complete matching from V_{1} to V_{2} if there exists a set of edges $M \subseteq E$ such that

- Each $u \in V_{1}$ is the endpoint of some $e \in M$
- No two edges in M share a vertex

Fact 1: Existence of a complete matching

- Implies $\left|V_{1}\right|=|M|$
- Requires $\left|V_{2}\right| \geq\left|V_{1}\right|$

Fact 2: If $\left|V_{1}\right|=\left|V_{2}\right|$ then there exists a complete matching M from V_{1} to V_{2} iff there exists a complete matching from V_{2} to V_{1}. Then M is called "perfect"

Hall's Marriage Theorem

Goal: Find necessary and sufficient conditions for a complete matching from V_{1} to V_{2} in a bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$

Definition: For every $A \subseteq V_{1}$ let

$$
N(A)=\left\{v \in V_{2}:\{u, v\} \in E \text { for some } u \in A\right\}
$$

be the set of neighbors in V_{2} of the vertices $u \in A$.

Note: Complete matching requires $|A| \leq|N(A)|$ for each $A \subseteq V_{1}\left(^{*}\right)$. Why?

- If $|A|<|N(A)|$ we cannot match every $u \in A$ with some $v \in N(A)$

Surprising fact: The condition (*) is also sufficient!

Hall's Marriage Theorem

Theorem: A bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$ has a complete matching from V_{1} to V_{2} if and only if $|A| \leq|N(A)|$ for every $A \subseteq V_{1}$.

Proof: Given in the book. Fast look...
\Rightarrow follows from argument above by contraposition
\Leftarrow follows by strong induction on $\left|V_{1}\right|$

Dance

Example: Dance with n boys and n girls. Assume that every girl knows r boys, and that every boy knows r girls.

Fact: There is a perfect match of girls and boys.

Subgraphs

Definition: A subgraph of $G=(V, E)$ is a graph $H=\left(V^{\prime}, E^{\prime}\right)$ such that

- $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$
- Every edge in E^{\prime} connects two vertices in V^{\prime}

Example: Given graph $G=(V, E)$

- Subgraph induced by vertex set $V^{\prime} \subseteq V$ has edge set

$$
E^{\prime}=\left\{\{u, v\} \in E \text { s.t. } u, v \in V^{\prime}\right\}
$$

- Subgraph induced by edge set $E^{\prime} \subseteq E$ has vertex set

$$
V^{\prime}=\left\{\text { endpoints of edges } e \in E^{\prime}\right\}
$$

Unions of Graphs

Definition: The union of simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph $H=(V, E)$ with

- $V=V_{1} \cup V_{2}$
- $E=E_{1} \cup E_{2}$

Notation: $H=G_{1} \cup G_{2}$

Representing Graphs

Graph Representation

Issue: Mathematical representation of a graph $G=(V, E)$ for purposes of

- Statistical or mathematical analysis
- Storage and/or transmission

Given: Graph $G=(V, E)$ with no multiple edges
A. Basic list: List vertices V and edges E
B. Adjacency list: For each (initial) vertex, list (terminal) vertices to which it is connected.

Matrices

Recall: An $m \times n$ matrix is a rectangular array with m rows and n columns

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Here $a_{i j}=$ entry in the i th row and j th column of A.

Notation: Write A in the form

$$
A=\left[a_{i j}: 1 \leq i \leq m, 1 \leq i \leq m\right]
$$

Adjacency Matrix

Given: Simple graph $G=(V, E)$ with vertices $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Definition: The adjacency matrix A_{G} of G is an $n \times n$ binary matrix

$$
a_{i j}= \begin{cases}1 & \text { if }\left\{v_{i}, v_{j}\right\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

That is, $a_{i j}=1$ if i, j are adjacent, and $a_{i j}=0$ otherwise

Note

- G undirected $\Rightarrow a_{i j}=a_{j i} \Rightarrow A_{G}$ is symmetric
- G simple $\Rightarrow a_{11}=\cdots=a_{n n}=0$

Example

Example 1: Given a graph, find its adjacency matrix.

Example 2: Let G be a graph with vertices $\{1,2,3,4\}$ and adjacency matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]
$$

Draw a picture of G

Adjacency Matrices in General

Adjacency matrices can be used to represent

- Self-loops: $a_{i i}=1$ if there is a self-loop from v_{i} to itself
- Multiple edges: $a_{i j}=$ number of edges between v_{i} and v_{j}
- Directed graphs: $a_{i j}=1$ if there is a directed edge from v_{i} to v_{j}

Graph Isomorphism

Isomorphism

Given: Simple graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$

Question: Are G_{1} and G_{2} essentially the same, up to reordering of their vertices and/or differences in how they are drawn?

Definition: Graphs G_{1} and G_{2} are isomorphic, written $G_{1} \cong G_{2}$, if there is a function $f: V_{1} \rightarrow V_{2}$ such that

- f is a bijection (1:1 and onto)
- $\{u, v\} \in E_{1}$ if and only if $\{f(u), f(v)\} \in E_{2}$

Second condition says that vertices u, v are adjacent in G_{1} iff the corresponding vertices $f(u), f(v)$ are adjacent in G_{2}

Isomorphism

Basic Properties

- Every graph is isomorphic to itself
- G_{1} is isomorphic to G_{2} iff G_{2} is isomorphic to G_{1}
- If $G_{1} \cong G_{2}$ and $G_{2} \cong G_{3}$ then $G_{1} \cong G_{3}$

Upshot: Isomorphism is an equivalence relation on finite graphs

More on Isomorphism

Question: Given two graphs G_{1} and G_{2}, are they isomorphic? One can

- Exhibit an isomorphism, or
- Show that no isomorphism exists

Fact: Suppose that $G_{1}=\left(V_{1}, E_{1}\right) \cong G_{2}=\left(V_{2}, E_{2}\right)$. Then

- $\left|V_{1}\right|=\left|V_{2}\right|$
- $\left|E_{1}\right|=\left|E_{2}\right|$
- $\left(\operatorname{deg}(v): v \in V_{1}\right)=\left(\operatorname{deg}(v): v \in V_{2}\right)$

Graph Invariants

Definition: A property $P()$ of graphs is called a graph invariant if it is preserve by isomorphism, i.e.,

$$
P\left(G_{1}\right) \text { and } G_{1} \cong G_{2} \text { imply } P\left(G_{2}\right)
$$

Example: By previous Fact, $P(G)=$ number of vertices in G, number of edges in G, degree sequence of G, are all graph invariants.

- Idea: If $P()$ is a graph invariant and $P\left(G_{1}\right) \neq P\left(G_{2}\right)$ then G_{1}, G_{2} are not isomorphic
- But agreement of invarants (e.g., number of nodes, edged, degree sequence) does not imply isomorphism.

Fact: Graphs G_{1} and G_{2} are isomorphic if and only if one can order the vertices of G_{2} so that G_{1} and G_{2} have the same adjacency matrix.

Connectivity and Connected Components

Paths and Circuits

Definition: Let $G=(V, E)$ be an undirected graph, vertices $u, v \in V$

- A path of length n from u to v is a sequence of edges

$$
e_{i}=\left\{u_{i-1}, u_{i}\right\} \in E \text { for } i=1, \ldots, n
$$

where initial vertex $u_{0}=u$ and final vertex $u_{n}=v$.

- For simple graph G, represent path via vertex sequence $u_{0}, u_{1}, \ldots, u_{n}$.
- A path is a circuit if $u=v$.
- A path is simple if no edge e_{i} appears more than once (a vertex can appear more than once)

Erdős Number

Example: Collaboration graph with

- $V=$ all mathematicians
- $E=$ pairs of coauthors

Definition: The Erdős number of a mathematician u, denoted Erdős (u), is the length of the shortest path from him/her to mathematician Paul Erdős.

- Erdős $(u)=0$ iff u is Erdős
- Erdős $(u)=1$ iff u has written a paper with Erdős
- Erdős $(u)=2$ iff u has not written a paper with Erdős, but has written a paper with a co-author of Erdős.

As of 2006 number of mathematicians with Erdős number 1, 2, and 4 was $504,6,593$, and 83 K .

Connected Graphs

Definition: A graph $G=(V, E)$ is connected if there is a path between every two distinct vertices in V.

Connectedness important in

- Computer networks (access and security)
- Transportation networks (can't get there from here)
- Social networks (disease transmission, gossip)

Connected Graphs and Simple Paths

Theorem: If $G=(V, E)$ is undirected and connected, then there exists a simple path between every pair of vertices in V.

Proof: Fix $u, v \in V$ with $u \neq v$. Let

$$
P=\{\text { all paths } p \text { between } u \text { and } v \text { in } G\}
$$

By assumption $P \neq \emptyset$, as G connected. Let

$$
p=u_{0}, u_{1}, \ldots, u_{n} \text { with } u_{0}=u, u_{n}=v
$$

be the vertex sequence of a path $p \in P$ with smallest length n.
Claim: path p is simple.

Connected Components

Definition: A connected component of a graph $G=(V, E)$ is a maximal connected subgraph, i.e., a graph H such that

- $H \leq G$
- H is connected
- No edge in G connects $V(H)$ and $\overline{V(H)}$

Note: The last condition equivalent to

- If $H \leq H^{\prime} \leq G$ and H^{\prime} is not equal to H, then H^{\prime} is not connected.

Connectivity, cont.

Basic Facts: Let $G=(V, E)$ be an undirected graph

- If G is connected, then it has one connected component (itself)
- G can be expressed as a disjoint union of its connected components
- There is a path between vertices $u, v \in V$ if and only if they belong to the same connected component of G

Definition: Let $G=(V, E)$ be an undirected graph

- $v \in V$ is a cut vertex if removing v and all edges incident on it increases the number of connected components in G
- $e \in E$ is a cut edge if removing it increases the number of connected components in G

Paths and Isomorphisms

Given: Isomorphic graphs G_{1}, G_{2} with isomorphism f. Note that path

$$
p=u_{0}, u_{1}, \ldots, u_{n}
$$

in graph G_{1} corresponds to path

$$
\tilde{p}=f\left(u_{0}\right), f\left(u_{1}\right), \ldots, f\left(u_{n}\right)
$$

in graph G_{2} and conversely. Moreover, definition of f ensures

- p simple $\Leftrightarrow \tilde{p}$ simple
- p circuit $\Leftrightarrow \tilde{p}$ circuit

Upshot: For $k \geq 3$ the property $P_{k}(G)=G$ has a simple circuit of length k is a graph invariant. A useful tool to determine when two graphs are not isomorphic

Counting Paths with the Adjacency Matrix

Theorem: Let G be an undirected graph with vertices v_{1}, \ldots, v_{n} and adj. matrix A. Then \# paths of length r from v_{i} to $v_{j}=(i, j)$ entry of A^{r}.

Proof: Induction on r.

Basis step: Let $r=1$. Then $A^{r}=A$ and $a_{i j}=\#$ edges between v_{i} and v_{j}, which is the number of length 1 paths from v_{i} to v_{j}

Induction step: Assume result is true for some $r \geq 1$. Note that $A^{r+1}=B A$ where $B=A^{r}$.

