
Special Graphs



Special Graphs

Complete graph on n vertices. For n ≥ 1, Kn = (V,E) defined by

I V = {v1, . . . , vn}

I E = {{vi, vj} : 1 ≤ i < j ≤ n}

Note |E| =
(
n
2

)
maximal number of possible edges for a simple graph

Cycle of length n. For n ≥ 1, Cn = (V,E) defined by

I V = {v1, . . . , vn}

I E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}



Special Graphs

The n-star. For n ≥ 1, Sn = (V,E) defined by

I V = {v0, v1, . . . , vn}

I E = {{v0, vj} : 1 ≤ j ≤ n}

The n-dimensional cube. For n ≥ 1, Qn = (V,E) defined by

I V = {0, 1}n

I E = {{b1, b2} : b1, b2 differ in only one position}



Bipartite Graphs

Definition: A simple graph G = (V,E) is bipartite if there exist V1, V2 s.t.

I V = V1 ∪ V2

I V1 ∩ V2 = ∅

I If e = {u, v} ∈ E then u ∈ V1 and v ∈ V2 or vice versa.

Terminology: V1, V2 is a bipartition of V

Idea: All edges in G are between V1 and V2. There are no edges between
vertices in V1 or between vertices in V2.



Examples

Example: C4 is bipartite, but C3 = K3 is not bipartite.

Fact: Graph G is bipartite if one can assign each vertex v ∈ V to one of two
colors such that no edge connects two vertices of the same color.

Definition: Km,n = complete bipartite graph with vertex set partition
V = V1 ∪ V2 with |V1| = m and |V2| = n.



Matching and Bipartite Graphs

Example 1: Dance with n girls and n boys. Each girl knows some subset of
the boys, and vice versa. (Assume that G knows B iff B knows G.)

Summary provided by a bipartite graph G = (V1 ∪ V2, E) with

I V1 = set of girls, V2 = set of boys

I {u, v} ∈ E if and only if girl u knows boy v

Q: Can we group dancers into non-overlapping (boy, girl) pairs so that
everyone dances with someone they know?



Matching and Bipartite Graphs

Example 2: Government needs to assign m agents to n overseas posts.
Each agent lists acceptable posts.

Summary provided by a bipartite graph G = (V1 ∪ V2, E) with

I V1 = set of agents, V2 = set of posts

I {u, v} ∈ E if and only if agent u finds post v acceptable

Q: Can we assign agents to posts so that every agent assigned to a different
post that is acceptable to them? Note, requires n ≥ m



Complete Matchings

Definition: Bipartite graph G = (V1 ∪ V2, E) has a complete matching from
V1 to V2 if there exists a set of edges M ⊆ E such that

I Each u ∈ V1 is the endpoint of some e ∈M

I No two edges in M share a vertex

Fact 1: Existence of a complete matching

I Implies |V1| = |M |

I Requires |V2| ≥ |V1|

Fact 2: If |V1| = |V2| then there exists a complete matching M from V1 to V2

iff there exists a complete matching from V2 to V1. Then M is called “perfect”



Hall’s Marriage Theorem

Goal: Find necessary and sufficient conditions for a complete matching from
V1 to V2 in a bipartite graph G = (V1 ∪ V2, E)

Definition: For every A ⊆ V1 let

N(A) = {v ∈ V2 : {u, v} ∈ E for some u ∈ A}

be the set of neighbors in V2 of the vertices u ∈ A.

Note: Complete matching requires |A| ≤ |N(A)| for each A ⊆ V1 (*). Why?

I If |A| < |N(A)| we cannot match every u ∈ A with some v ∈ N(A)

Surprising fact: The condition (*) is also sufficient!



Hall’s Marriage Theorem

Theorem: A bipartite graph G = (V1 ∪ V2, E) has a complete matching from
V1 to V2 if and only if |A| ≤ |N(A)| for every A ⊆ V1.

Proof: Given in the book. Fast look...

⇒ follows from argument above by contraposition

⇐ follows by strong induction on |V1|



Dance

Example: Dance with n boys and n girls. Assume that every girl knows
r boys, and that every boy knows r girls.

Fact: There is a perfect match of girls and boys.



Subgraphs

Definition: A subgraph of G = (V,E) is a graph H = (V ′, E′) such that

I V ′ ⊆ V and E′ ⊆ E

I Every edge in E′ connects two vertices in V ′

Example: Given graph G = (V,E)

I Subgraph induced by vertex set V ′ ⊆ V has edge set

E′ = {{u, v} ∈ E s.t. u, v ∈ V ′}

I Subgraph induced by edge set E′ ⊆ E has vertex set

V ′ = {endpoints of edges e ∈ E′}



Unions of Graphs

Definition: The union of simple graphs G1 = (V1, E1) and G2 = (V2, E2) is
the graph H = (V,E) with

I V = V1 ∪ V2

I E = E1 ∪ E2

Notation: H = G1 ∪G2



Representing Graphs



Graph Representation

Issue: Mathematical representation of a graph G = (V,E) for purposes of

I Statistical or mathematical analysis

I Storage and/or transmission

Given: Graph G = (V,E) with no multiple edges

A. Basic list: List vertices V and edges E

B. Adjacency list: For each (initial) vertex, list (terminal) vertices to which
it is connected.



Matrices

Recall: An m× n matrix is a rectangular array with m rows and n columns

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


Here aij = entry in the ith row and jth column of A.

Notation: Write A in the form

A = [aij : 1 ≤ i ≤ m, 1 ≤ i ≤ m]



Adjacency Matrix

Given: Simple graph G = (V,E) with vertices V = {v1, v2, . . . , vn}.

Definition: The adjacency matrix AG of G is an n× n binary matrix

aij =

{
1 if {vi, vj} ∈ E

0 otherwise

That is, aij = 1 if i, j are adjacent, and aij = 0 otherwise

Note

I G undirected⇒ aij = aji ⇒ AG is symmetric

I G simple⇒ a11 = · · · = ann = 0



Example

Example 1: Given a graph, find its adjacency matrix.

Example 2: Let G be a graph with vertices {1, 2, 3, 4} and adjacency matrix

A =


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0


Draw a picture of G



Adjacency Matrices in General

Adjacency matrices can be used to represent

I Self-loops: aii = 1 if there is a self-loop from vi to itself

I Multiple edges: aij = number of edges between vi and vj

I Directed graphs: aij = 1 if there is a directed edge from vi to vj



Graph Isomorphism



Isomorphism

Given: Simple graphs G1 = (V1, E1) and G2 = (V2, E2)

Question: Are G1 and G2 essentially the same, up to reordering of their
vertices and/or differences in how they are drawn?

Definition: Graphs G1 and G2 are isomorphic, written G1
∼= G2, if there is a

function f : V1 → V2 such that

I f is a bijection (1:1 and onto)

I {u, v} ∈ E1 if and only if {f(u), f(v)} ∈ E2

Second condition says that vertices u, v are adjacent in G1 iff the
corresponding vertices f(u), f(v) are adjacent in G2



Isomorphism

Basic Properties

I Every graph is isomorphic to itself

I G1 is isomorphic to G2 iff G2 is isomorphic to G1

I If G1
∼= G2 and G2

∼= G3 then G1
∼= G3

Upshot: Isomorphism is an equivalence relation on finite graphs



More on Isomorphism

Question: Given two graphs G1 and G2, are they isomorphic? One can

I Exhibit an isomorphism, or

I Show that no isomorphism exists

Fact: Suppose that G1 = (V1, E1) ∼= G2 = (V2, E2). Then

I |V1| = |V2|

I |E1| = |E2|

I (deg(v) : v ∈ V1) = (deg(v) : v ∈ V2)



Graph Invariants

Definition: A property P () of graphs is called a graph invariant if it is
preserve by isomorphism, i.e.,

P (G1) and G1
∼= G2 imply P (G2)

Example: By previous Fact, P (G) = number of vertices in G, number of
edges in G, degree sequence of G, are all graph invariants.

I Idea: If P () is a graph invariant and P (G1) 6= P (G2) then G1, G2 are
not isomorphic

I But agreement of invarants (e.g., number of nodes, edged, degree
sequence) does not imply isomorphism.



Isomorphism and Adjacency

Fact: Graphs G1 and G2 are isomorphic if and only if one can order the
vertices of G2 so that G1 and G2 have the same adjacency matrix.



Connectivity and Connected
Components



Paths and Circuits

Definition: Let G = (V,E) be an undirected graph, vertices u, v ∈ V

I A path of length n from u to v is a sequence of edges

ei = {ui−1, ui} ∈ E for i = 1, . . . , n

where initial vertex u0 = u and final vertex un = v.

I For simple graph G, represent path via vertex sequence u0, u1, . . . , un.

I A path is a circuit if u = v.

I A path is simple if no edge ei appears more than once (a vertex can
appear more than once)



Erdős Number

Example: Collaboration graph with

I V = all mathematicians

I E = pairs of coauthors

Definition: The Erdős number of a mathematician u, denoted Erdős(u), is
the length of the shortest path from him/her to mathematician Paul Erdős.

I Erdős(u) = 0 iff u is Erdős

I Erdős(u) = 1 iff u has written a paper with Erdős

I Erdős(u) = 2 iff u has not written a paper with Erdős, but has written a
paper with a co-author of Erdős.

As of 2006 number of mathematicians with Erdős number 1, 2, and 4 was
504, 6,593, and 83K.



Connected Graphs

Definition: A graph G = (V,E) is connected if there is a path between every
two distinct vertices in V .

Connectedness important in

I Computer networks (access and security)

I Transportation networks (can’t get there from here)

I Social networks (disease transmission, gossip)



Connected Graphs and Simple Paths

Theorem: If G = (V,E) is undirected and connected, then there exists a
simple path between every pair of vertices in V .

Proof: Fix u, v ∈ V with u 6= v. Let

P = {all paths p between u and v in G}

By assumption P 6= ∅, as G connected. Let

p = u0, u1, . . . , un with u0 = u, un = v

be the vertex sequence of a path p ∈ P with smallest length n.

Claim: path p is simple.



Connected Components

Definition: A connected component of a graph G = (V,E) is a maximal
connected subgraph, i.e., a graph H such that

I H ≤ G

I H is connected

I No edge in G connects V (H) and V (H)

Note: The last condition equivalent to

I If H ≤ H ′ ≤ G and H ′ is not equal to H, then H ′ is not connected.



Connectivity, cont.

Basic Facts: Let G = (V,E) be an undirected graph

I If G is connected, then it has one connected component (itself)

I G can be expressed as a disjoint union of its connected components

I There is a path between vertices u, v ∈ V if and only if they belong to the
same connected component of G

Definition: Let G = (V,E) be an undirected graph

I v ∈ V is a cut vertex if removing v and all edges incident on it increases
the number of connected components in G

I e ∈ E is a cut edge if removing it increases the number of connected
components in G



Paths and Isomorphisms

Given: Isomorphic graphs G1, G2 with isomorphism f . Note that path

p = u0, u1, . . . , un

in graph G1 corresponds to path

p̃ = f(u0), f(u1), . . . , f(un)

in graph G2 and conversely. Moreover, definition of f ensures

I p simple⇔ p̃ simple

I p circuit⇔ p̃ circuit

Upshot: For k ≥ 3 the property Pk(G) = G has a simple circuit of length k
is a graph invariant. A useful tool to determine when two graphs are not
isomorphic



Counting Paths with the Adjacency Matrix

Theorem: Let G be an undirected graph with vertices v1, . . . , vn and adj.
matrix A. Then # paths of length r from vi to vj = (i, j) entry of Ar.

Proof: Induction on r.

Basis step: Let r = 1. Then Ar = A and aij = # edges between vi and vj ,
which is the number of length 1 paths from vi to vj

Induction step: Assume result is true for some r ≥ 1. Note that Ar+1 = BA
where B = Ar.


