Graphs and Networks

Graphs

A graph is a set of vertices, select pairs of which are connected by edges.

Formal: A graph is a pair $G=(V, E)$ where

- V is a non-empty set of vertices
- E is a set of edges connecting pairs of vertices

Two flavors of graphs

- Undirected: Each $e \in E$ is an unordered pair $\{u, v\}$ with $u, v \in V$
- Directed: Each $e \in E$ is an ordered pair (u, v) with $u, v \in V$

Idea: Graphs capture pairwise relationships (edges) between a set of objects (vertices)

Drawing Graphs

Drawing a graph $G=(V, E)$

- Vertices $u, v \in V$ represented as points
- Undirected edge $e=\{u, v\} \in E$ represented as a line between u to v
- Directed edge $e=(u, v) \in E$ represented as an arrow from u to v

Example: Draw the graph G with

- $V=\{1,2,3,4\}, E=\{\{1,2\},\{2,3\},\{1,3\},\{3,3\}\}$
- $V=\{1,2,3\}, E=\{(1,2),(2,1),(3,2),(3,3)\}$

Examples

Organizational Hierarchy

- Vertices $V=$ employees of a company
- Edges $E=$ all (u, v) such that u reports to v

Airline Network

- Vertices $V=$ cities in the US to which an airline flies
- Edges $E=$ all (u, v) such that there is a flight from u to v

Facebook Network

- Vertices $V=$ all users of Facebook
- Edges $E=$ all (u, v) such that u is friends with v

Examples

Co-authorship Network

- All statisticians
- Edges $E=$ all $\{u, v\}$ such that u and v have co-authored a paper

Disease Transmission

- Vertices $V=$ residents of the U.S.
- Edges $E=$ all $\{u, v\}$ such that u and v have been in close proximity

Internet

- Vertices $V=$ computers worldwide
- Edges $E=$ all $\{u, v\}$ such that u and v have a direct connection

Terminology

- Graph G is finite if V is finite and infinite otherwise
- Vertices u, v called endpoints of edge $e=\{u, v\}$ or $e=(u, v)$
- An edge $e=\{u, u\}$ or $e=(u, u)$ is called a (self) loop
- In some cases, a graph can have multiple edges between two nodes
- Graphs are often referred to as networks, vertices as nodes, and edges as links

Adjacency and Degree

Adjacency

Given: Undirected graph $G=(V, E)$

- Vertices $u, v \in V$ are adjacent if $\{u, v\} \in E$
- Edge $\{u, v\} \in E$ is incident on vertices u, v
- Vertices $u, v \in V$ are endpoints of the edge $\{u, v\} \in E$

Definition: A graph G is simple if it is undirected and has no self-loops or multiple edges.

Degree

Definition: The degree of a vertex u in a graph $G=(V, E)$ is the number of edges incident on u, with loops counting twice

$$
\operatorname{deg}(u)=\sum_{v \in V} \mathbb{I}(\{u, v\} \in E)
$$

Terminology: u is isolated if $\operatorname{deg}(u)=0$, and is a pendant if $\operatorname{deg}(u)=1$.

Fact: If G has no loops or multiple edges then $\operatorname{deg}(u) \leq|V|-1$

Basic Facts

Fact 1: If $G=(V, R)$ is simple then $|E| \leq\binom{|V|}{2}$

Fact 2: If $G=(V, R)$ is simple then at least two vertices have the same degree.

Proof: Let $V=\left\{v_{1}, \ldots v_{n}\right\}$ be ordered such that $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ where $d_{i}=\operatorname{deg}\left(v_{i}\right)$. If $d_{i} \neq d_{j}$ for $i \neq j$, then

$$
d_{1}<d_{2}<\ldots<d_{n}
$$

Consider two cases

1. $d_{1} \geq 1$
2. $d_{1}=0$

Handshaking Theorem

Fact: If $G=(V, E)$ is undirected then

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

Cor: If $G=(V, R)$ is undirected then the sum of the odd degrees is even

$$
\sum_{v \text { s.t. } \operatorname{deg}(v) \text { is odd }} \operatorname{deg}(v) \text { is even }
$$

Example: A graph has 6 vertices with degrees 5, 4, 3, 2, 2, 0. How many edges does it have?

Directed Graphs

Given: Directed graph $G=(V, E)$. If $e=(u, v) \in E$ we say

- u is the initial vertex of e
- v is the terminal vertex of e

Definition:

- In-degree $\operatorname{deg}^{-}(v)=\mid\{e \in E: e=(u, v)$ some $u \in V\} \mid$ number of edges terminating at v
- Out-degree $\operatorname{deg}^{+}(v)=\mid\{e \in E: e=(v, w)$ some $w \in V\} \mid$ number of edges originating at v

Note: Loops contribute one to in-degree and out-degree.

In-degrees and Out-degrees

Fact: In a directed graph,

$$
|E|=\sum_{v \in V} \operatorname{deg}^{+}(v)=\sum_{v \in V} \operatorname{deg}^{-}(v)
$$

Special Graphs

Special Graphs

Complete graph on n vertices. For $n \geq 1, K_{n}=(V, E)$ defined by

- $V=\left\{v_{1}, \ldots, v_{n}\right\}$
- $E=\left\{\left\{v_{i}, v_{j}\right\}: 1 \leq i<j \leq n\right\}$

Note $|E|=\binom{n}{2}$ maximal number of possible edges for a simple graph

Cycle of length n. For $n \geq 1, C_{n}=(V, E)$ defined by

- $V=\left\{v_{1}, \ldots, v_{n}\right\}$
- $E=\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{2}\right\}, \ldots,\left\{v_{1}, v_{2}\right\}\right\}$

Special Graphs

The n-star. For $n \geq 1, S_{n}=(V, E)$ defined by

- $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$
- $E=\left\{\left\{v_{0}, v_{j}\right\}: 1 \leq j \leq n\right\}$

The n-dimensional cube. For $n \geq 1, Q_{n}=(V, E)$ defined by

- $V=\{0,1\}^{n}$
- $E=\left\{\left\{b_{1}, b_{2}\right\}: b_{1}, b_{2}\right.$ differ in only one position $\}$

Bipartite Graphs

Definition: A simple graph $G=(V, E)$ is bipartite if there exist V_{1}, V_{2} s.t.

- $V=V_{1} \cup V_{2}$
- $V_{1} \cap V_{2}=\emptyset$
- If $e=\{u, v\} \in E$ then $u \in V_{1}$ and $v \in V_{2}$ or vice versa.

Terminology: V_{1}, V_{2} is a bipartition of V

Idea: All edges in G are between V_{1} and V_{2}. There are no edges between vertices in V_{1} or between vertices in V_{2}.

Examples

Example: C_{4} is bipartite, but $C_{3}=K_{3}$ is not bipartite.

Fact: Graph G is bipartite if one can assign each vertex $v \in V$ to one of two colors such that no edge connects two vertices of the same color.

Definition: $K_{m, n}=$ complete bipartite graph with vertex set partition $V=V_{1} \cup V_{2}$ with $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$.

Matching and Bipartite Graphs

Example 1: Dance with n girls and n boys. Each girl knows some subset of the boys, and vice versa. (Assume that G knows B iff B knows G.)

Summary provided by a bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$ with

- $V_{1}=$ set of girls, $V_{2}=$ set of boys
- $\{u, v\} \in E$ if and only if girl u knows boy v

Q: Can we group dancers into non-overlapping (boy, girl) pairs so that everyone dances with someone they know?

Matching and Bipartite Graphs

Example 2: Government needs to assign m agents to n overseas posts. Each agent lists acceptable posts.

Summary provided by a bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$ with

- $V_{1}=$ set of agents, $V_{2}=$ set of posts
- $\{u, v\} \in E$ if and only if agent u finds post v acceptable

Q: Can we assign agents to posts so that every agent assigned to a different post that is acceptable to them? Note, requires $n \geq m$

Complete Matchings

Definition: Bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$ has a complete matching from V_{1} to V_{2} if there exists a set of edges $M \subseteq E$ such that

- Each $u \in V_{1}$ is the endpoint of some $e \in M$
- No two edges in M share a vertex

Fact 1: Existence of a complete matching

- Implies $\left|V_{1}\right|=|M|$
- Requires $\left|V_{2}\right| \geq\left|V_{1}\right|$

Fact 2: If $\left|V_{1}\right|=\left|V_{2}\right|$ then there exists a complete matching M from V_{1} to V_{2} iff there exists a complete matching from V_{2} to $V_{1} . M$ called "perfect"

Hall's Marriage Theorem

Goal: Find necessary and sufficient conditions for a complete match in a bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$

Definition: For every $A \subseteq V_{1}$ let

$$
N(A)=\left\{v \in V_{2}:\{u, v\} \in E \text { for some } u \in A\right\}
$$

be the set of neighbors of the vertices $u \in A$ in V_{2}.

Note: If some set $A \subseteq V_{1}$ with $|A|=k$ has fewer than k neighbors in V_{2} then a complete match is not possible: there is no way to match every $u \in A$ with some $v \in N(A)$.

Surprising fact: This condition is also necessary.

Hall's Marriage Theorem

Theorem: A bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$ has a complete matching from V_{1} to V_{2} if and only if $|A| \leq|N(A)|$ for every $A \subseteq V_{1}$.

Proof: Given in the book. Fast look...
\Rightarrow follows from argument above by contraposition
\Leftarrow follows by strong induction on $\left|V_{1}\right|$

Dance

Example: Suppose that there are n boys and n girls at a dance, that every girl knows r boys, and that every boy knows r girls.

Fact: There is a perfect match of girls and boys.

