
Graphs and Networks



Graphs

A graph is a set of vertices, select pairs of which are connected by edges.

Formal: A graph is a pair G = (V,E) where

I V is a non-empty set of vertices

I E is a set of edges connecting pairs of vertices

Two flavors of graphs

I Undirected: Each e ∈ E is an unordered pair {u, v} with u, v ∈ V

I Directed: Each e ∈ E is an ordered pair (u, v) with u, v ∈ V

Idea: Graphs capture pairwise relationships (edges) between a set
of objects (vertices)



Drawing Graphs

Drawing a graph G = (V,E)

I Vertices u, v ∈ V represented as points

I Undirected edge e = {u, v} ∈ E represented as a line between u to v

I Directed edge e = (u, v) ∈ E represented as an arrow from u to v

Example: Draw the graph G with

I V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {1, 3}, {3, 3}}

I V = {1, 2, 3}, E = {(1, 2), (2, 1), (3, 2), (3, 3)}



Examples

Organizational Hierarchy

I Vertices V = employees of a company

I Edges E = all (u, v) such that u reports to v

Airline Network

I Vertices V = cities in the US to which an airline flies

I Edges E = all (u, v) such that there is a flight from u to v

Facebook Network

I Vertices V = all users of Facebook

I Edges E = all (u, v) such that u is friends with v



Examples

Co-authorship Network

I All statisticians

I Edges E = all {u, v} such that u and v have co-authored a paper

Disease Transmission

I Vertices V = residents of the U.S.

I Edges E = all {u, v} such that u and v have been in close proximity

Internet

I Vertices V = computers worldwide

I Edges E = all {u, v} such that u and v have a direct connection



Terminology

I Graph G is finite if V is finite and infinite otherwise

I Vertices u, v called endpoints of edge e = {u, v} or e = (u, v)

I An edge e = {u, u} or e = (u, u) is called a (self) loop

I In some cases, a graph can have multiple edges between two nodes

I Graphs are often referred to as networks, vertices as nodes,
and edges as links



Adjacency and Degree



Adjacency

Given: Undirected graph G = (V,E)

I Vertices u, v ∈ V are adjacent if {u, v} ∈ E

I Edge {u, v} ∈ E is incident on vertices u, v

I Vertices u, v ∈ V are endpoints of the edge {u, v} ∈ E

Definition: A graph G is simple if it is undirected and has no self-loops
or multiple edges.



Degree

Definition: The degree of a vertex u in a graph G = (V,E) is the number of
edges incident on u, with loops counting twice

deg(u) =
∑
v∈V

I({u, v} ∈ E)

Terminology: u is isolated if deg(u) = 0, and is a pendant if deg(u) = 1.

Fact: If G has no loops or multiple edges then deg(u) ≤ |V | − 1



Basic Facts

Fact 1: If G = (V,R) is simple then |E| ≤
(|V |

2

)
Fact 2: If G = (V,R) is simple then at least two vertices have the same
degree.

Proof: Let V = {v1, . . . vn} be ordered such that d1 ≤ d2 ≤ · · · ≤ dn where
di = deg(vi). If di 6= dj for i 6= j, then

d1 < d2 < . . . < dn

Consider two cases

1. d1 ≥ 1

2. d1 = 0



Handshaking Theorem

Fact: If G = (V,E) is undirected then∑
v∈V

deg(v) = 2 |E|

Cor: If G = (V,R) is undirected then the sum of the odd degrees is even∑
v s.t. deg(v) is odd

deg(v) is even

Example: A graph has 6 vertices with degrees 5, 4, 3, 2, 2, 0. How many
edges does it have?



Directed Graphs

Given: Directed graph G = (V,E). If e = (u, v) ∈ E we say

I u is the initial vertex of e

I v is the terminal vertex of e

Definition:

I In-degree deg−(v) = |{e ∈ E : e = (u, v) some u ∈ V }|
number of edges terminating at v

I Out-degree deg+(v) = |{e ∈ E : e = (v, w) some w ∈ V }|
number of edges originating at v

Note: Loops contribute one to in-degree and out-degree.



In-degrees and Out-degrees

Fact: In a directed graph,

|E| =
∑
v∈V

deg+(v) =
∑
v∈V

deg−(v)



Special Graphs



Special Graphs

Complete graph on n vertices. For n ≥ 1, Kn = (V,E) defined by

I V = {v1, . . . , vn}

I E = {{vi, vj} : 1 ≤ i < j ≤ n}

Note |E| =
(
n
2

)
maximal number of possible edges for a simple graph

Cycle of length n. For n ≥ 1, Cn = (V,E) defined by

I V = {v1, . . . , vn}

I E = {{v1, v2}, {v1, v2}, . . . , {v1, v2}}



Special Graphs

The n-star. For n ≥ 1, Sn = (V,E) defined by

I V = {v0, v1, . . . , vn}

I E = {{v0, vj} : 1 ≤ j ≤ n}

The n-dimensional cube. For n ≥ 1, Qn = (V,E) defined by

I V = {0, 1}n

I E = {{b1, b2} : b1, b2 differ in only one position}



Bipartite Graphs

Definition: A simple graph G = (V,E) is bipartite if there exist V1, V2 s.t.

I V = V1 ∪ V2

I V1 ∩ V2 = ∅

I If e = {u, v} ∈ E then u ∈ V1 and v ∈ V2 or vice versa.

Terminology: V1, V2 is a bipartition of V

Idea: All edges in G are between V1 and V2. There are no edges between
vertices in V1 or between vertices in V2.



Examples

Example: C4 is bipartite, but C3 = K3 is not bipartite.

Fact: Graph G is bipartite if one can assign each vertex v ∈ V to one of two
colors such that no edge connects two vertices of the same color.

Definition: Km,n = complete bipartite graph with vertex set partition
V = V1 ∪ V2 with |V1| = m and |V2| = n.



Matching and Bipartite Graphs

Example 1: Dance with n girls and n boys. Each girl knows some subset of
the boys, and vice versa. (Assume that G knows B iff B knows G.)

Summary provided by a bipartite graph G = (V1 ∪ V2, E) with

I V1 = set of girls, V2 = set of boys

I {u, v} ∈ E if and only if girl u knows boy v

Q: Can we group dancers into non-overlapping (boy, girl) pairs so that
everyone dances with someone they know?



Matching and Bipartite Graphs

Example 2: Government needs to assign m agents to n overseas posts.
Each agent lists acceptable posts.

Summary provided by a bipartite graph G = (V1 ∪ V2, E) with

I V1 = set of agents, V2 = set of posts

I {u, v} ∈ E if and only if agent u finds post v acceptable

Q: Can we assign agents to posts so that every agent assigned to a different
post that is acceptable to them? Note, requires n ≥ m



Complete Matchings

Definition: Bipartite graph G = (V1 ∪ V2, E) has a complete matching from
V1 to V2 if there exists a set of edges M ⊆ E such that

I Each u ∈ V1 is the endpoint of some e ∈M

I No two edges in M share a vertex

Fact 1: Existence of a complete matching

I Implies |V1| = |M |

I Requires |V2| ≥ |V1|

Fact 2: If |V1| = |V2| then there exists a complete matching M from V1 to V2

iff there exists a complete matching from V2 to V1. M called “perfect”



Hall’s Marriage Theorem

Goal: Find necessary and sufficient conditions for a complete match in a
bipartite graph G = (V1 ∪ V2, E)

Definition: For every A ⊆ V1 let

N(A) = {v ∈ V2 : {u, v} ∈ E for some u ∈ A}

be the set of neighbors of the vertices u ∈ A in V2.

Note: If some set A ⊆ V1 with |A| = k has fewer than k neighbors in V2 then
a complete match is not possible: there is no way to match every u ∈ A with
some v ∈ N(A).

Surprising fact: This condition is also necessary.



Hall’s Marriage Theorem

Theorem: A bipartite graph G = (V1 ∪ V2, E) has a complete matching from
V1 to V2 if and only if |A| ≤ |N(A)| for every A ⊆ V1.

Proof: Given in the book. Fast look...

⇒ follows from argument above by contraposition

⇐ follows by strong induction on |V1|



Dance

Example: Suppose that there are n boys and n girls at a dance, that every
girl knows r boys, and that every boy knows r girls.

Fact: There is a perfect match of girls and boys.


