Permutations and Combinations

Permutations

Definition: Let S be a set with n elements

- ► A *permutation* of S is an ordered list (arrangement) of its elements
- For r = 1,..., n an r-permutation of S is an ordered list (arrangement) of r elements of S.

Definition: Let P(n, r) = # of *r*-permutations of an *n* element set

Fact: $P(n,r) = n(n-1)\cdots(n-r+1)$

Corollary: P(n,n) = n! and in general P(n,r) = n!/(n-r)!

Combinations

Definition: Let *S* be a set with *n* elements. For $0 \le r \le n$ an *r*-combination of *S* is a (unordered) subset of *S* with *r* elements.

Definition: Let C(n, r) = # of *r*-combinations of an *n* element set

Fact: C(n, 0) = 1 (the empty set) and with convention 0! = 1 we can write

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!} \quad 0 \le r \le n$$

Corollary: C(n,r) = C(n,n-r)

Coin Flipping Example

Example: Flip coin 12 times

Q1: What is the number of possible outcomes with 5 heads?

Let $S = \{1, 2, \dots, 12\}$ be index/position of 12 flips

Outcome with 5 heads obtained as follows:

- ▶ Select 5 positions from S
- Assign H to these positions and T to all other positions

Q2: What is the number of possible outcomes with at least 3 tails?

Q3: Number of possible outcomes with an equal number of heads and tails?

Example: Hat contains 20 cards: 1 red, 5 blue, 14 white. Cards are removed from the hat one at a time and placed side by side, in order.

How many color sequences are there under the following restrictions

- 1. No restrictions
- 2. Red card in position 2
- 3. Blue cards in positions 8, 15, 16
- 4. Blue cards in positions 3, 4 and white cards in positions 8, 9, 10

Binomial Coefficients and Identities

Binomial Theorem

Example

$$(x+y)^{2} = x^{2} + 2xy + y^{2} = {\binom{2}{0}} x^{2}y^{0} + {\binom{2}{1}} x^{1}y^{1} + {\binom{2}{2}} x^{0}y^{1}$$

Example

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 = \sum_{k=0}^3 \binom{3}{k} x^{n-k} y^k$$

Binomial Theorem: For all $x, y \in \mathbb{R}$ and $n \ge 0$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Corollaries of Binomial Theorem

Fact 1:
$$2^n = \sum_{j=0}^n \binom{n}{j}$$

Fact 2:
$$3^n = \sum_{j=0}^n {n \choose j} 2^j$$

Fact 3:
$$\sum_{j=0}^{n} (-1)^{j} {n \choose j} = 0$$

Corollary: Sum of $\binom{n}{i}$ over even j is equal to sum of $\binom{n}{i}$ over odd j

Monotonicity of Binomial Coefficients

Fact: Let $n \ge 1$. Then

$$\binom{n}{r} \leq \binom{n}{r+1}$$
 if and only if $r \leq (n-1)/2$

Idea: Binomial coefficients increase as r goes from 0 to (n - 1)/2, then decrease as r goes from (n - 1)/2 to n.

Pascal's Triangle

Pyramid with *n*th row equal to the binomial coefficients $\binom{n}{0}, \ldots, \binom{n}{n}$

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \\ \dots$

Pascal's Identity: If $1 \le k \le n$ then $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.

The identity says that every entry of Pascal's triangle can be obtained by adding the two entries above it.

Using Pascal's Identity

Example: Show that

$$\begin{pmatrix} 2n+2\\n+1 \end{pmatrix} = 2 \begin{pmatrix} 2n\\n \end{pmatrix} + 2 \begin{pmatrix} 2n\\n+1 \end{pmatrix}$$

Vandermonde Identity

Vandermonde Identity: If $1 \le r \le m, n$ then

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

Proof: Let $S = \{0, 1\}^{m+n}$. For k = 0, ..., r define

- $A = \{b \in S \text{ with } r \text{ ones}\}$
- $A_k = \{b \in S \text{ with } (r k) \text{ ones in first m bits, } k \text{ ones in last n bits} \}$

Note that

- $\bullet \ A = A_0 \cup A_1 \cup \dots \cup A_r$
- $A_i \cap A_j = \emptyset$ if $i \neq j$

More Identities

Corollary: For $n \ge 1$ we have $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}$

Fact: If $1 \le r \le n$ then $\binom{n+1}{r+1} = \sum_{k=r}^{n} \binom{k}{r}$

Proof: Let $S = \{0, 1\}^{n+1}$. For k = r, ..., n define

• $A_k = \{b \in S \text{ having } (r+1) \text{ ones, with last one in positions } k+1\}$

•
$$A = \{b \in S \text{ with } (r+1) \text{ ones}\}$$

Note that

- $A_i \cap A_j = \emptyset$ if $i \neq j$
- $\blacktriangleright A = A_r \cup A_1 \cup \dots \cup A_n$

More Permutations and Combinations

Permutations of Indistinguishable Objects

Example: Number of distinct rearrangements of the letters in SUPPRESS?

Fact: Suppose we are given n objects of k different types where

- there are n_j objects of type j
- objects of the same type are indistinguishable

Then the number of distinct permutations of these objects is given by the *multinomial coefficient*

$$\binom{n}{n_1 \cdots n_k} := \frac{n!}{n_1! \cdots n_k!}$$

(Numerator = # permutations of *n* distinct objects. Denominator accounts for the fact that, once their positions are fixed, all $n_r!$ permutations of type *r* objects yield the same pattern.)

The Multinomial Theorem

Theorem: If $n \ge 1$ and $x_1, \ldots, x_m \in \mathbb{R}$ then

$$(x_1 + x_2 + \dots + x_m)^n = \sum_{n_1 + \dots + n_m = n} {n \choose n_1 \cdots n_m} x_1^{n_1} \cdots x_m^{n_m}$$

Note: The Binomial Theorem is the special case where m = 2.

Objects in Boxes

General Question: How many ways are there to distribute n objects into k boxes?

Four cases: Objects and boxes can be

- distinguishable (labeled)
- indistinguishable (unlabeled)

Case 1: Objects and Boxes are Distinguishable

Q: How many ways are there to distribute $n = n_1 + \cdots + n_k$ distinguishable objects into *k* distinct boxes so that box *r* has n_r objects (order of objects in a box is not important)?

A: Multinomial coefficient

$$\binom{n}{n_1\cdots n_k}$$

Example: Given standard deck of 52 cards, how many ways are there to deal hands of 5 cards to 3 different players?

Example: How many ways are there to place n distinct objects into k distinguishable boxes?

Case 2: Objects Indistinguishable, Boxes Distinguishable

Q: How many ways are there to place n indistinguishable objects into k distinguishable boxes?

A: Binomial coefficient

$$\binom{n+k-1}{k-1} = \binom{n+k-1}{n}$$

Indistinguishable Objects in Distinguishable Boxes

Proof: For $1 \le j \le k$ let $n_j = \#$ objects in box j.

▶ There is a 1:1 correspondence between assignments of *n* objects to *k* boxes and *k*-tuples (*n*₁,...,*n_k*) such that

$$n_j \geq 0$$
 and $\sum_{j=1}^n n_j = n$ (*)

► There is a 1:1 correspondence between k-tuples (n₁,...,n_k) satisfying (*) and the arrangement of k - 1 "bars" and n "stars"

$$(n_1,\ldots,n_k) \Leftrightarrow *\cdots * |*\cdots * |\cdots |*\cdots *$$

The number of such arrangements is

$$\binom{n+k-1}{k-1}$$

Examples

Example: How many integer solutions are there to the equation $x_1 + x_2 + x_3 = 18$ under the following constraints?

1. $x_1, x_2, x_3 \ge 0$

- 2. $x_1, x_2 \ge 0$ and $x_3 = 4$
- **3**. $x_1 \ge 1, x_2 \ge 2, x_3 \ge 3$

Example: A drawer contains red, blue, green, and yellow socks. Assume that socks are indistinguishable apart from color and there are at least 8 socks of each color.

How many ways can 8 socks be chosen from the drawer (order unimportant)?

Graphs and Networks

Graphs

A graph is a set of vertices, select pairs of which are connected by edges.

Formal: A graph is a pair G = (V, E) where

- ► V is a non-empty set of vertices
- E is a set of edges connecting pairs of vertices

Two flavors of graphs

- Undirected: Each $e \in E$ is an unordered pair $\{u, v\}$ with $u, v \in V$
- *Directed*: Each $e \in E$ is an ordered pair (u, v) with $u, v \in V$

Idea: Graphs capture *pairwise* relationships (edges) between a set of objects (vertices)

Drawing Graphs

Drawing a graph G = (V, E)

- Vertices $u, v \in V$ represented as points
- Undirected edge $e = \{u, v\} \in E$ represented as a line between u to v
- Directed edge $e = (u, v) \in E$ represented as an arrow from u to v

Example: Draw the graph G with

 $\blacktriangleright V = \{1, 2, 3, 4\}, E = \{\{1, 2\}, \{2, 3\}, \{1, 3\}, \{3, 3\}\}$

$$\blacktriangleright V = \{1, 2, 3\}, E = \{(1, 2), (2, 1), (3, 2), (3, 3)\}$$

Examples

Organizational Hierarchy

- Vertices V = employees of a company
- Edges E = all (u, v) such that u reports to v

Airline Network

- Vertices V = cities in the US to which an airline flies
- Edges E = all (u, v) such that there is a flight from u to v

Facebook Network

- Vertices V = all users of Facebook
- Edges E = all (u, v) such that u is friends with v

Examples

Co-authorship Network

- All statisticians
- Edges $E = \text{all } \{u, v\}$ such that u and v have co-authored a paper

Disease Transmission

- Vertices V = residents of the U.S.
- Edges $E = \text{all } \{u, v\}$ such that u and v have been in close proximity

Internet

- Vertices V = computers worldwide
- Edges $E = \text{all } \{u, v\}$ such that u and v have a direct connection

Terminology

▶ Graph G is *finite* if V is finite and *infinite* otherwise

- Vertices u, v called *endpoints* of edge $e = \{u, v\}$ or e = (u, v)
- An edge $e = \{u, u\}$ or e = (u, u) is called a (self) *loop*
- In some cases, a graph can have multiple edges between two nodes
- Graphs are often referred to as *networks*, vertices as *nodes*, and edges as *links*

Adjacency and Degree

Adjacency

Given: Undirected graph G = (V, E)

- Vertices $u, v \in V$ are *adjacent* if $\{u, v\} \in E$
- Edge $\{u, v\} \in E$ is *incident* on vertices u, v
- Vertices $u, v \in V$ are endpoints of the edge $\{u, v\} \in E$

Definition: A graph *G* is *simple* if it is undirected and has no self-loops or multiple edges.

Degree

Definition: The degree of a vertex u in a graph G = (V, E) is the number of edges incident on u, with loops counting twice

$$\deg(u) = \sum_{v \in V} \mathbb{I}(\{u, v\} \in E)$$

Terminology: u is *isolated* if deg(u) = 0, and is a *pendant* if deg(u) = 1.

Fact: If *G* has no loops or multiple edges then $deg(u) \le |V| - 1$