
Permutations and Combinations



Permutations

Definition: Let S be a set with n elements

I A permutation of S is an ordered list (arrangement) of its elements

I For r = 1, . . . , n an r-permutation of S is an ordered list (arrangement)
of r elements of S.

Definition: Let P (n, r) = # of r-permutations of an n element set

Fact: P (n, r) = n (n− 1) · · · (n− r + 1)

Corollary: P (n, n) = n! and in general P (n, r) = n!/(n− r)!



Combinations

Definition: Let S be a set with n elements. For 0 ≤ r ≤ n an r-combination
of S is a (unordered) subset of S with r elements.

Definition: Let C(n, r) = # of r-combinations of an n element set

Fact: C(n, 0) = 1 (the empty set) and with convention 0! = 1 we can write

C(n, r) =

(
n

r

)
=

n!

r! (n− r)!
0 ≤ r ≤ n

Corollary: C(n, r) = C(n, n− r)



Coin Flipping Example

Example: Flip coin 12 times

Q1: What is the number of possible outcomes with 5 heads?

Let S = {1, 2, . . . , 12} be index/position of 12 flips

Outcome with 5 heads obtained as follows:

I Select 5 positions from S

I Assign H to these positions and T to all other positions

Q2: What is the number of possible outcomes with at least 3 tails?

Q3: Number of possible outcomes with an equal number of heads and tails?



Hat with Cards Example

Example: Hat contains 20 cards: 1 red, 5 blue, 14 white. Cards are removed
from the hat one at a time and placed side by side, in order.

How many color sequences are there under the following restrictions

1. No restrictions

2. Red card in position 2

3. Blue cards in positions 8, 15, 16

4. Blue cards in positions 3, 4 and white cards in positions 8, 9, 10



Binomial Coefficients and Identities



Binomial Theorem

Example

(x+ y)2 = x2 + 2xy + y2 =

(
2

0

)
x2y0 +

(
2

1

)
x1y1 +

(
2

2

)
x0y1

Example

(x+ y)3 = x3 + 3x2y + 3xy2 + y3 =

3∑
k=0

(
3

k

)
xn−kyk

Binomial Theorem: For all x, y ∈ R and n ≥ 0

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k



Corollaries of Binomial Theorem

Fact 1: 2n =
∑n

j=0

(
n
j

)

Fact 2: 3n =
∑n

j=0

(
n
j

)
2j

Fact 3:
∑n

j=0(−1)
j
(
n
j

)
= 0

Corollary: Sum of
(
n
j

)
over even j is equal to sum of

(
n
j

)
over odd j



Monotonicity of Binomial Coefficients

Fact: Let n ≥ 1. Then

(
n

r

)
≤

(
n

r + 1

)
if and only if r ≤ (n− 1)/2

Idea: Binomial coefficients increase as r goes from 0 to (n− 1)/2, then
decrease as r goes from (n− 1)/2 to n.



Pascal’s Triangle

Pyramid with nth row equal to the binomial coefficients
(
n
0

)
, . . . ,

(
n
n

)
(
0
0

)
(
1
0

)(
1
1

)
(
2
0

)(
2
1

)(
2
2

)
(
3
0

)(
3
1

)(
3
2

)(
3
3

)
· · ·

Pascal’s Identity: If 1 ≤ k ≤ n then
(
n+1
k

)
=
(

n
k−1

)
+
(
n
k

)
.

The identity says that every entry of Pascal’s triangle can be obtained by
adding the two entries above it.



Using Pascal’s Identity

Example: Show that(
2n+ 2

n+ 1

)
= 2

(
2n

n

)
+ 2

(
2n

n+ 1

)



Vandermonde Identity

Vandermonde Identity: If 1 ≤ r ≤ m,n then(
m+ n

r

)
=

r∑
k=0

(
m

r − k

)(
n

k

)

Proof: Let S = {0, 1}m+n. For k = 0, . . . , r define

I A = {b ∈ S with r ones}

I Ak = {b ∈ S with (r − k) ones in first m bits, k ones in last n bits}

Note that

I A = A0 ∪A1 ∪ · · · ∪Ar

I Ai ∩Aj = ∅ if i 6= j



More Identities

Corollary: For n ≥ 1 we have
(
2n
n

)
=
∑n

k=0

(
n
k

)2
Fact: If 1 ≤ r ≤ n then

(
n+1
r+1

)
=
∑n

k=r

(
k
r

)
Proof: Let S = {0, 1}n+1. For k = r, . . . , n define

I Ak = {b ∈ S having (r + 1) ones, with last one in positions k + 1}

I A = {b ∈ S with (r + 1) ones}

Note that

I Ai ∩Aj = ∅ if i 6= j

I A = Ar ∪A1 ∪ · · · ∪An



More Permutations and Combinations



Permutations of Indistinguishable Objects

Example: Number of distinct rearrangements of the letters in SUPPRESS?

Fact: Suppose we are given n objects of k different types where

I there are nj objects of type j

I objects of the same type are indistinguishable

Then the number of distinct permutations of these objects is given by the
multinomial coefficient (

n

n1 · · ·nk

)
:=

n!

n1! · · ·nk!

(Numerator = # permutations of n distinct objects. Denominator accounts
for the fact that, once their positions are fixed, all nr! permutations of type r
objects yield the same pattern.)



The Multinomial Theorem

Theorem: If n ≥ 1 and x1, . . . , xm ∈ R then

(x1 + x2 + · · ·+ xm)n =
∑

n1+···+nm=n

(
n

n1 · · ·nm

)
xn1
1 · · · x

nm
m

Note: The Binomial Theorem is the special case where m = 2.



Objects in Boxes

General Question: How many ways are there to distribute n objects
into k boxes?

Four cases: Objects and boxes can be

I distinguishable (labeled)

I indistinguishable (unlabeled)



Case 1: Objects and Boxes are Distinguishable

Q: How many ways are there to distribute n = n1 + · · ·nk distinguishable
objects into k distinct boxes so that box r has nr objects (order of objects
in a box is not important)?

A: Multinomial coefficient (
n

n1 · · ·nk

)

Example: Given standard deck of 52 cards, how many ways are there to deal
hands of 5 cards to 3 different players?

Example: How many ways are there to place n distinct objects into k
distinguishable boxes?



Case 2: Objects Indistinguishable, Boxes Distinguishable

Q: How many ways are there to place n indistinguishable objects into k
distinguishable boxes?

A: Binomial coefficient (
n+ k − 1

k − 1

)
=

(
n+ k − 1

n

)



Indistinguishable Objects in Distinguishable Boxes

Proof: For 1 ≤ j ≤ k let nj = # objects in box j.

I There is a 1:1 correspondence between assignments of n objects to k
boxes and k-tuples (n1, . . . , nk) such that

nj ≥ 0 and
n∑

j=1

nj = n (∗)

I There is a 1:1 correspondence between k-tuples (n1, . . . , nk) satisfying
(∗) and the arrangement of k − 1 “bars” and n “stars”

(n1, . . . , nk)⇔ ∗ · · · ∗ | ∗ · · · ∗ | · · · | ∗ · · · ∗

I The number of such arrangements is(
n+ k − 1

k − 1

)



Examples

Example: How many integer solutions are there to the equation
x1 + x2 + x3 = 18 under the following constraints?

1. x1, x2, x3 ≥ 0

2. x1, x2 ≥ 0 and x3 = 4

3. x1 ≥ 1, x2 ≥ 2, x3 ≥ 3

Example: A drawer contains red, blue, green, and yellow socks. Assume that
socks are indistinguishable apart from color and there are at least 8 socks of
each color.

How many ways can 8 socks be chosen from the drawer (order unimportant)?



Graphs and Networks



Graphs

A graph is a set of vertices, select pairs of which are connected by edges.

Formal: A graph is a pair G = (V,E) where

I V is a non-empty set of vertices

I E is a set of edges connecting pairs of vertices

Two flavors of graphs

I Undirected: Each e ∈ E is an unordered pair {u, v} with u, v ∈ V

I Directed: Each e ∈ E is an ordered pair (u, v) with u, v ∈ V

Idea: Graphs capture pairwise relationships (edges) between a set
of objects (vertices)



Drawing Graphs

Drawing a graph G = (V,E)

I Vertices u, v ∈ V represented as points

I Undirected edge e = {u, v} ∈ E represented as a line between u to v

I Directed edge e = (u, v) ∈ E represented as an arrow from u to v

Example: Draw the graph G with

I V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {1, 3}, {3, 3}}

I V = {1, 2, 3}, E = {(1, 2), (2, 1), (3, 2), (3, 3)}



Examples

Organizational Hierarchy

I Vertices V = employees of a company

I Edges E = all (u, v) such that u reports to v

Airline Network

I Vertices V = cities in the US to which an airline flies

I Edges E = all (u, v) such that there is a flight from u to v

Facebook Network

I Vertices V = all users of Facebook

I Edges E = all (u, v) such that u is friends with v



Examples

Co-authorship Network

I All statisticians

I Edges E = all {u, v} such that u and v have co-authored a paper

Disease Transmission

I Vertices V = residents of the U.S.

I Edges E = all {u, v} such that u and v have been in close proximity

Internet

I Vertices V = computers worldwide

I Edges E = all {u, v} such that u and v have a direct connection



Terminology

I Graph G is finite if V is finite and infinite otherwise

I Vertices u, v called endpoints of edge e = {u, v} or e = (u, v)

I An edge e = {u, u} or e = (u, u) is called a (self) loop

I In some cases, a graph can have multiple edges between two nodes

I Graphs are often referred to as networks, vertices as nodes,
and edges as links



Adjacency and Degree



Adjacency

Given: Undirected graph G = (V,E)

I Vertices u, v ∈ V are adjacent if {u, v} ∈ E

I Edge {u, v} ∈ E is incident on vertices u, v

I Vertices u, v ∈ V are endpoints of the edge {u, v} ∈ E

Definition: A graph G is simple if it is undirected and has no self-loops
or multiple edges.



Degree

Definition: The degree of a vertex u in a graph G = (V,E) is the number of
edges incident on u, with loops counting twice

deg(u) =
∑
v∈V

I({u, v} ∈ E)

Terminology: u is isolated if deg(u) = 0, and is a pendant if deg(u) = 1.

Fact: If G has no loops or multiple edges then deg(u) ≤ |V | − 1


