Permutations and Combinations

Permutations

Definition: Let S be a set with n elements

- A permutation of S is an ordered list (arrangement) of its elements
- For $r=1, \ldots, n$ an r-permutation of S is an ordered list (arrangement) of r elements of S.

Definition: Let $P(n, r)=\#$ of r-permutations of an n element set

Fact: $P(n, r)=n(n-1) \cdots(n-r+1)$

Corollary: $P(n, n)=n$! and in general $P(n, r)=n!/(n-r)$!

Combinations

Definition: Let S be a set with n elements. For $0 \leq r \leq n$ an r-combination of S is a (unordered) subset of S with r elements.

Definition: Let $C(n, r)=\#$ of r-combinations of an n element set

Fact: $C(n, 0)=1$ (the empty set) and with convention $0!=1$ we can write

$$
C(n, r)=\binom{n}{r}=\frac{n!}{r!(n-r)!} \quad 0 \leq r \leq n
$$

Corollary: $C(n, r)=C(n, n-r)$

Coin Flipping Example

Example: Flip coin 12 times

Q1: What is the number of possible outcomes with 5 heads?
Let $S=\{1,2, \ldots, 12\}$ be index/position of 12 flips
Outcome with 5 heads obtained as follows:

- Select 5 positions from S
- Assign H to these positions and T to all other positions

Q2: What is the number of possible outcomes with at least 3 tails?

Q3: Number of possible outcomes with an equal number of heads and tails?

Hat with Cards Example

Example: Hat contains 20 cards: 1 red, 5 blue, 14 white. Cards are removed from the hat one at a time and placed side by side, in order.

How many color sequences are there under the following restrictions

1. No restrictions
2. Red card in position 2
3. Blue cards in positions $8,15,16$
4. Blue cards in positions 3,4 and white cards in positions $8,9,10$

Binomial Coefficients and Identities

Binomial Theorem

Example

$$
(x+y)^{2}=x^{2}+2 x y+y^{2}=\binom{2}{0} x^{2} y^{0}+\binom{2}{1} x^{1} y^{1}+\binom{2}{2} x^{0} y^{1}
$$

Example

$$
(x+y)^{3}=x^{3}+3 x^{2} y+3 x y^{2}+y^{3}=\sum_{k=0}^{3}\binom{3}{k} x^{n-k} y^{k}
$$

Binomial Theorem: For all $x, y \in \mathbb{R}$ and $n \geq 0$

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Corollaries of Binomial Theorem

Fact 1: $2^{n}=\sum_{j=0}^{n}\binom{n}{j}$

Fact 2: $3^{n}=\sum_{j=0}^{n}\binom{n}{j} 2^{j}$

Fact 3: $\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}=0$

Corollary: Sum of $\binom{n}{j}$ over even j is equal to sum of $\binom{n}{j}$ over odd j

Monotonicity of Binomial Coefficients

Fact: Let $n \geq 1$. Then

$$
\binom{n}{r} \leq\binom{ n}{r+1} \text { if and only if } r \leq(n-1) / 2
$$

Idea: Binomial coefficients increase as r goes from 0 to $(n-1) / 2$, then decrease as r goes from $(n-1) / 2$ to n.

Pascal's Triangle

Pyramid with nth row equal to the binomial coefficients $\binom{n}{0}, \ldots,\binom{n}{n}$

$$
\begin{aligned}
& \left({ }_{0}^{0}\right) \\
& \binom{1}{0}\binom{1}{1} \\
& \left.{ }_{(2)}^{2}\right)\binom{2}{1}\binom{2}{2} \\
& \binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3}
\end{aligned}
$$

Pascal's Identity: If $1 \leq k \leq n$ then $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$.

The identity says that every entry of Pascal's triangle can be obtained by adding the two entries above it.

Using Pascal's Identity

Example: Show that

$$
\binom{2 n+2}{n+1}=2\binom{2 n}{n}+2\binom{2 n}{n+1}
$$

Vandermonde Identity

Vandermonde Identity: If $1 \leq r \leq m, n$ then

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{r-k}\binom{n}{k}
$$

Proof: Let $S=\{0,1\}^{m+n}$. For $k=0, \ldots, r$ define

- $A=\{b \in S$ with r ones $\}$
- $A_{k}=\{b \in S$ with $(r-k)$ ones in first m bits, k ones in last n bits $\}$

Note that

- $A=A_{0} \cup A_{1} \cup \cdots \cup A_{r}$
- $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$

More Identities

Corollary: For $n \geq 1$ we have $\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}$

Fact: If $1 \leq r \leq n$ then $\binom{n+1}{r+1}=\sum_{k=r}^{n}\binom{k}{r}$
Proof: Let $S=\{0,1\}^{n+1}$. For $k=r, \ldots, n$ define

- $A_{k}=\{b \in S$ having $(r+1)$ ones, with last one in positions $k+1\}$
- $A=\{b \in S$ with $(r+1)$ ones $\}$

Note that

- $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$
- $A=A_{r} \cup A_{1} \cup \cdots \cup A_{n}$

More Permutations and Combinations

Permutations of Indistinguishable Objects

Example: Number of distinct rearrangements of the letters in SUPPRESS?
Fact: Suppose we are given n objects of k different types where

- there are n_{j} objects of type j
- objects of the same type are indistinguishable

Then the number of distinct permutations of these objects is given by the multinomial coefficient

$$
\binom{n}{n_{1} \cdots n_{k}}:=\frac{n!}{n_{1}!\cdots n_{k}!}
$$

(Numerator $=\#$ permutations of n distinct objects. Denominator accounts for the fact that, once their positions are fixed, all n_{r} ! permutations of type r objects yield the same pattern.)

The Multinomial Theorem

Theorem: If $n \geq 1$ and $x_{1}, \ldots, x_{m} \in \mathbb{R}$ then

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}=\sum_{n_{1}+\cdots+n_{m}=n}\binom{n}{n_{1} \cdots n_{m}} x_{1}^{n_{1}} \cdots x_{m}^{n_{m}}
$$

Note: The Binomial Theorem is the special case where $m=2$.

Objects in Boxes

General Question: How many ways are there to distribute n objects into k boxes?

Four cases: Objects and boxes can be

- distinguishable (labeled)
- indistinguishable (unlabeled)

Case 1: Objects and Boxes are Distinguishable

Q: How many ways are there to distribute $n=n_{1}+\cdots n_{k}$ distinguishable objects into k distinct boxes so that box r has n_{r} objects (order of objects in a box is not important)?

A: Multinomial coefficient

$$
\binom{n}{n_{1} \cdots n_{k}}
$$

Example: Given standard deck of 52 cards, how many ways are there to deal hands of 5 cards to 3 different players?

Example: How many ways are there to place n distinct objects into k distinguishable boxes?

Case 2: Objects Indistinguishable, Boxes Distinguishable

Q: How many ways are there to place n indistinguishable objects into k distinguishable boxes?

A: Binomial coefficient

$$
\binom{n+k-1}{k-1}=\binom{n+k-1}{n}
$$

Indistinguishable Objects in Distinguishable Boxes

Proof: For $1 \leq j \leq k$ let $n_{j}=\#$ objects in box j.

- There is a 1:1 correspondence between assignments of n objects to k boxes and k-tuples $\left(n_{1}, \ldots, n_{k}\right)$ such that

$$
n_{j} \geq 0 \text { and } \sum_{j=1}^{n} n_{j}=n \quad(*)
$$

- There is a 1:1 correspondence between k-tuples $\left(n_{1}, \ldots, n_{k}\right)$ satisfying $(*)$ and the arrangement of $k-1$ "bars" and n "stars"

$$
\left(n_{1}, \ldots, n_{k}\right) \Leftrightarrow * \cdots *|* \cdots *| \cdots \mid * \cdots *
$$

- The number of such arrangements is

$$
\binom{n+k-1}{k-1}
$$

Examples

Example: How many integer solutions are there to the equation $x_{1}+x_{2}+x_{3}=18$ under the following constraints?

1. $x_{1}, x_{2}, x_{3} \geq 0$
2. $x_{1}, x_{2} \geq 0$ and $x_{3}=4$
3. $x_{1} \geq 1, x_{2} \geq 2, x_{3} \geq 3$

Example: A drawer contains red, blue, green, and yellow socks. Assume that socks are indistinguishable apart from color and there are at least 8 socks of each color.

How many ways can 8 socks be chosen from the drawer (order unimportant)?

Graphs and Networks

Graphs

A graph is a set of vertices, select pairs of which are connected by edges.

Formal: A graph is a pair $G=(V, E)$ where

- V is a non-empty set of vertices
- E is a set of edges connecting pairs of vertices

Two flavors of graphs

- Undirected: Each $e \in E$ is an unordered pair $\{u, v\}$ with $u, v \in V$
- Directed: Each $e \in E$ is an ordered pair (u, v) with $u, v \in V$

Idea: Graphs capture pairwise relationships (edges) between a set of objects (vertices)

Drawing Graphs

Drawing a graph $G=(V, E)$

- Vertices $u, v \in V$ represented as points
- Undirected edge $e=\{u, v\} \in E$ represented as a line between u to v
- Directed edge $e=(u, v) \in E$ represented as an arrow from u to v

Example: Draw the graph G with

- $V=\{1,2,3,4\}, E=\{\{1,2\},\{2,3\},\{1,3\},\{3,3\}\}$
- $V=\{1,2,3\}, E=\{(1,2),(2,1),(3,2),(3,3)\}$

Examples

Organizational Hierarchy

- Vertices $V=$ employees of a company
- Edges $E=$ all (u, v) such that u reports to v

Airline Network

- Vertices $V=$ cities in the US to which an airline flies
- Edges $E=$ all (u, v) such that there is a flight from u to v

Facebook Network

- Vertices $V=$ all users of Facebook
- Edges $E=$ all (u, v) such that u is friends with v

Examples

Co-authorship Network

- All statisticians
- Edges $E=$ all $\{u, v\}$ such that u and v have co-authored a paper

Disease Transmission

- Vertices $V=$ residents of the U.S.
- Edges $E=$ all $\{u, v\}$ such that u and v have been in close proximity

Internet

- Vertices $V=$ computers worldwide
- Edges $E=$ all $\{u, v\}$ such that u and v have a direct connection

Terminology

- Graph G is finite if V is finite and infinite otherwise
- Vertices u, v called endpoints of edge $e=\{u, v\}$ or $e=(u, v)$
- An edge $e=\{u, u\}$ or $e=(u, u)$ is called a (self) loop
- In some cases, a graph can have multiple edges between two nodes
- Graphs are often referred to as networks, vertices as nodes, and edges as links

Adjacency and Degree

Adjacency

Given: Undirected graph $G=(V, E)$

- Vertices $u, v \in V$ are adjacent if $\{u, v\} \in E$
- Edge $\{u, v\} \in E$ is incident on vertices u, v
- Vertices $u, v \in V$ are endpoints of the edge $\{u, v\} \in E$

Definition: A graph G is simple if it is undirected and has no self-loops or multiple edges.

Degree

Definition: The degree of a vertex u in a graph $G=(V, E)$ is the number of edges incident on u, with loops counting twice

$$
\operatorname{deg}(u)=\sum_{v \in V} \mathbb{I}(\{u, v\} \in E)
$$

Terminology: u is isolated if $\operatorname{deg}(u)=0$, and is a pendant if $\operatorname{deg}(u)=1$.

Fact: If G has no loops or multiple edges then $\operatorname{deg}(u) \leq|V|-1$

