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Consequences of Bezout’s Theorem

Corollary: Suppose a, b, c ∈ N+. If a | bc and gcd(a, b) = 1 then a | c

Proposition: If p is prime and p | a1 · · · an then p divides some ai.

Fact: If p is prime and 0 < k < p then p |
(
p
k

)

FTA (Uniqueness): Suppose that n ≥ 1 and p1, . . . , pr and q1, . . . , qs are
primes such that

n = p1 · · · pr = q1 · · · qs.

Then r = s and q1, . . . , qr is just a rearrangement of p1, . . . , pr.



Mathematical Induction



Overview of Mathematical Induction

Given: Propositional function P (n) with domain N+ = {1, 2, . . .}

Induction: Proof strategy to establish that P (n) is true for every n

Mathematical basis of induction is the well ordering property, an axiom of the
natural numbers N+ that states

I Every non-empty set S ⊆ N+ has a smallest element



Mathematical Induction

Given: Propositional function P (n) with domain N+

Basis step: Show that P (1) is true

Inductive step: Show that P (k)→ P (k + 1) is true for every k ≥ 1

I assume that P (k) is true “inductive hypothesis”

I establish that P (k + 1) is true

Conclusion: P (n) is true for every n ∈ N+

We can view induction as a (new) rule of inference, namely,

[P (1) ∧ ∀k (P (k)→ P (k + 1))] → ∀nP (n)



Validity of Induction

Informal: Ladder/Dominos

I P (1) is true by Basis step

I P (1)→ P (2) is true by Inductive step, so P (2) is true

I P (2)→ P (3) is true by Inductive step, so P (3) is true

I P (3)→ P (4) is true by Inductive step, so P (4) is true

I and so on...

Conclude: P (n) is true for every n



Validity of Induction

Formal: Suppose that basis and inductive steps hold but ∀nP (n) is F

I Then S = {n : P (n) is F} is non-empty

I By well-ordering, S has smallest element m

I By Basis step, P (1) is true so m ≥ 2

I Definition of S implies P (m− 1) is T and we know m− 1 ≥ 1

I Inductive step then implies P (m) is T, a contradiction

I Conclude that ∀nP (n) is T



Examples

Example 1: Sum of first n odd integers is n2. To show: ∀nP (n), where

P (n) is 1 + 3 + · · ·+ (2n− 1) = n2

Example 2: Sum of first n perfect squares. To show ∀nP (n), where

P (n) is 12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

Example 3: If n ≥ 1 is odd then 8 |n2 − 1. To show: ∀m ≥ 0 P (m), where

P (m) is 8 | (2m+ 1)2 − 1



Fermat’s Little Theorem

Theorem: If p is prime and r ≥ 0 then p | rp − r (∗)

Binomial Theorem: For all a, b ∈ R and n ≥ 0

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k



Harmonic Numbers

Definition: The nth harmonic number is the sum

Hm = 1 +
1

2
+

1

3
+ · · ·+ 1

m

Fact: For each n ≥ 0, H2n ≥ 1 + n/2

Corollaries:

I Hn tends to infinity as n tends to infinity

I Hn ≥ 1 + blog2 nc/2 for each n ≥ 1

Theorem: Hn − lnn→ γ = .577... (Euler’s constant) as n→∞



Induction with a Stronger Inductive Hypothesis.

Given: Propositional function P (n) with domain N+.

Basis step: Show that P (1) is T

Inductive step: Show that P (1)∧ · · · ∧P (k)→ P (k+1) is T for each k ≥ 1.

I assume that P (1) ∧ · · · ∧ P (k) is T “strong inductive hypothesis”

I establish that P (k + 1) is true

Conclusion: P (n) is true for every n ∈ N+

We can view strong induction as a (new) rule of inference

[P (1) ∧ ∀k (P (1) ∧ · · · ∧ P (k)→ P (k + 1))] → ∀nP (n)

Formal validity of strong induction follows from well-ordering principle.



Ex. Prime Factorization

Thm: Every integer n ≥ 2 can be written as a product of primes.

Proof: Strong induction. Propositional function: for n ≥ 2 let

P (n) = n can be written as a product of primes

Basis: P (2) is true as 2 is prime.

Induction: Suppose that P (2), P (3), . . . , P (k) are true.

I Case 1: Suppose k + 1 is prime

I Case 2: Suppose k + 1 is composite.



Ex. Piles of Stones

Given: Pile of n ≥ 2 stones

I split pile into two piles of size r, s ≥ 1 with r + s = n

I compute product rs of pile sizes

I continue splitting piles into smaller ones until every pile has one stone

Claim: No matter how piles split, sum of products rs over splits is n(n− 1)/2

Proof: Strong induction. Propositional function: for n ≥ 2 let

P (n) = starting with n stones, sum of products is n(n− 1)/2

Basis: Consider P (2)

Induction: Suppose that P (2), P (3), . . . , P (k) are T.



Basics of Counting



Product Rule

Product Rule: Suppose that the elements of a collection S can be specified
by a sequence of k steps such that

I There are nj possibilities at step j

I The selections made at steps 1, . . . , j do not affect the number of
possibilities at step j + 1

Then S has n1 · n2 · · ·nk elements.

Example: Cartesian product of sets A1, . . . , Ak is

A1 × · · · ×Ak = {(a1, . . . , ak) : a1 ∈ A1, . . . , ak ∈ Ak}

By product rule |A1 × · · · ×Ak| = |A1| · · · |Ak|



Example: Counting Functions

Given: Finite sets A = {a1, . . . , am} and B = {b1, . . . , bn}.

Qu 1: What is the number of functions f : A→ B?

Qu 2: What is the number of one-to-one functions f : A→ B?

Qu 3: What is the number of onto functions f : A→ B?



Indicator Functions

Definition: The indicator function of a proposition q is given by

I(q) =

{
1 if q is true
0 if q is false

Example: Find |2S | for S = {s1, . . . , sn} finite

Define function f : 2S → {0, 1}n from subsets of S to binary n-tuples by

f(A) = (I(s1 ∈ A), I(s2 ∈ A), . . . , I(sn ∈ A))

Can check that f() is one-to-one and onto, so

|2S | = |{0, 1}n| = 2n = 2|S|



Sum Rule

Sum Rule: S’pose that each element of a collection S is one of k types, and

I There are nj elements of type j

I No element can be of more than one type.

Then |S| = n1 + · · ·+ nk.

Equivalent Form: If S = A1 ∪ · · · ∪Ak where Ai ∩Aj for i 6= j then
|S| = |A1|+ · · ·+ |Ak|.

Example: How many binary sequences b of length 6 begin with 01 or 001?


