Introduction to Decision Sciences
 Lecture 9

Andrew Nobel

October 10, 2017

Consequences of Bezout's Theorem

Corollary: Suppose $a, b, c \in \mathbb{N}_{+}$. If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$

Proposition: If p is prime and $p \mid a_{1} \cdots a_{n}$ then p divides some a_{i}.

Fact: If p is prime and $0<k<p$ then $p \left\lvert\,\binom{ p}{k}\right.$

FTA (Uniqueness): Suppose that $n \geq 1$ and p_{1}, \ldots, p_{r} and q_{1}, \ldots, q_{s} are primes such that

$$
n=p_{1} \cdots p_{r}=q_{1} \cdots q_{s}
$$

Then $r=s$ and q_{1}, \ldots, q_{r} is just a rearrangement of p_{1}, \ldots, p_{r}.

Mathematical Induction

Overview of Mathematical Induction

Given: Propositional function $P(n)$ with domain $\mathbb{N}_{+}=\{1,2, \ldots\}$

Induction: Proof strategy to establish that $P(n)$ is true for every n

Mathematical basis of induction is the well ordering property, an axiom of the natural numbers \mathbb{N}_{+}that states

- Every non-empty set $S \subseteq \mathbb{N}_{+}$has a smallest element

Mathematical Induction

Given: Propositional function $P(n)$ with domain \mathbb{N}_{+}

Basis step: Show that $P(1)$ is true

Inductive step: Show that $P(k) \rightarrow P(k+1)$ is true for every $k \geq 1$

- assume that $P(k)$ is true "inductive hypothesis"
- establish that $P(k+1)$ is true

Conclusion: $P(n)$ is true for every $n \in \mathbb{N}_{+}$

We can view induction as a (new) rule of inference, namely,

$$
[P(1) \wedge \forall k(P(k) \rightarrow P(k+1))] \rightarrow \forall n P(n)
$$

Validity of Induction

Informal: Ladder/Dominos

- $P(1)$ is true by Basis step
- $P(1) \rightarrow P(2)$ is true by Inductive step, so $P(2)$ is true
- $P(2) \rightarrow P(3)$ is true by Inductive step, so $P(3)$ is true
- $P(3) \rightarrow P(4)$ is true by Inductive step, so $P(4)$ is true
- and so on...

Conclude: $P(n)$ is true for every n

Validity of Induction

Formal: Suppose that basis and inductive steps hold but $\forall n P(n)$ is F

- Then $S=\{n: P(n)$ is F$\}$ is non-empty
- By well-ordering, S has smallest element m
- By Basis step, $P(1)$ is true so $m \geq 2$
- Definition of S implies $P(m-1)$ is T and we know $m-1 \geq 1$
- Inductive step then implies $P(m)$ is T , a contradiction
- Conclude that $\forall n P(n)$ is T

Examples

Example 1: Sum of first n odd integers is n^{2}. To show: $\forall n P(n)$, where

$$
P(n) \text { is } 1+3+\cdots+(2 n-1)=n^{2}
$$

Example 2: Sum of first n perfect squares. To show $\forall n P(n)$, where

$$
P(n) \text { is } 1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Example 3: If $n \geq 1$ is odd then $8 \mid n^{2}-1$. To show: $\forall m \geq 0 P(m)$, where

$$
P(m) \text { is } 8 \mid(2 m+1)^{2}-1
$$

Fermat's Little Theorem

Theorem: If p is prime and $r \geq 0$ then $p \mid r^{p}-r \quad(*)$

Binomial Theorem: For all $a, b \in \mathbb{R}$ and $n \geq 0$

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

Harmonic Numbers

Definition: The nth harmonic number is the sum

$$
H_{m}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{m}
$$

Fact: For each $n \geq 0, H_{2^{n}} \geq 1+n / 2$

Corollaries:

- H_{n} tends to infinity as n tends to infinity
- $H_{n} \geq 1+\left\lfloor\log _{2} n\right\rfloor / 2$ for each $n \geq 1$

Theorem: $H_{n}-\ln n \rightarrow \gamma=.577 \ldots$ (Euler's constant) as $n \rightarrow \infty$

Induction with a Stronger Inductive Hypothesis.

Given: Propositional function $P(n)$ with domain \mathbb{N}_{+}.

Basis step: Show that $P(1)$ is T
Inductive step: Show that $P(1) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$ is T for each $k \geq 1$.

- assume that $P(1) \wedge \cdots \wedge P(k)$ is T "strong inductive hypothesis"
- establish that $P(k+1)$ is true

Conclusion: $P(n)$ is true for every $n \in \mathbb{N}_{+}$

We can view strong induction as a (new) rule of inference

$$
[P(1) \wedge \forall k(P(1) \wedge \cdots \wedge P(k) \rightarrow P(k+1))] \rightarrow \forall n P(n)
$$

Formal validity of strong induction follows from well-ordering principle.

Ex. Prime Factorization

Thm: Every integer $n \geq 2$ can be written as a product of primes.
Proof: Strong induction. Propositional function: for $n \geq 2$ let

$$
P(n)=n \text { can be written as a product of primes }
$$

Basis: $P(2)$ is true as 2 is prime.

Induction: Suppose that $P(2), P(3), \ldots, P(k)$ are true.

- Case 1: Suppose $k+1$ is prime
- Case 2: Suppose $k+1$ is composite.

Ex. Piles of Stones

Given: Pile of $n \geq 2$ stones

- split pile into two piles of size $r, s \geq 1$ with $r+s=n$
- compute product $r s$ of pile sizes
- continue splitting piles into smaller ones until every pile has one stone

Claim: No matter how piles split, sum of products $r s$ over splits is $n(n-1) / 2$

Proof: Strong induction. Propositional function: for $n \geq 2$ let

$$
P(n)=\text { starting with } n \text { stones, sum of products is } n(n-1) / 2
$$

Basis: Consider $P(2)$

Induction: Suppose that $P(2), P(3), \ldots, P(k)$ are T.

Basics of Counting

Product Rule

Product Rule: Suppose that the elements of a collection S can be specified by a sequence of k steps such that

- There are n_{j} possibilities at step j
- The selections made at steps $1, \ldots, j$ do not affect the number of possibilities at step $j+1$

Then S has $n_{1} \cdot n_{2} \cdots n_{k}$ elements.

Example: Cartesian product of sets A_{1}, \ldots, A_{k} is

$$
A_{1} \times \cdots \times A_{k}=\left\{\left(a_{1}, \ldots, a_{k}\right): a_{1} \in A_{1}, \ldots, a_{k} \in A_{k}\right\}
$$

By product rule $\left|A_{1} \times \cdots \times A_{k}\right|=\left|A_{1}\right| \cdots\left|A_{k}\right|$

Example: Counting Functions

Given: Finite sets $A=\left\{a_{1}, \ldots, a_{m}\right\}$ and $B=\left\{b_{1}, \ldots, b_{n}\right\}$.

Qu 1: What is the number of functions $f: A \rightarrow B$?

Qu 2: What is the number of one-to-one functions $f: A \rightarrow B$?

Qu 3: What is the number of onto functions $f: A \rightarrow B$?

Indicator Functions

Definition: The indicator function of a proposition q is given by

$$
I(q)= \begin{cases}1 & \text { if } q \text { is true } \\ 0 & \text { if } q \text { is false }\end{cases}
$$

Example: Find $\left|2^{S}\right|$ for $S=\left\{s_{1}, \ldots, s_{n}\right\}$ finite
Define function $f: 2^{S} \rightarrow\{0,1\}^{n}$ from subsets of S to binary n-tuples by

$$
f(A)=\left(I\left(s_{1} \in A\right), I\left(s_{2} \in A\right), \ldots, I\left(s_{n} \in A\right)\right)
$$

Can check that $f()$ is one-to-one and onto, so

$$
\left|2^{S}\right|=\left|\{0,1\}^{n}\right|=2^{n}=2^{|S|}
$$

Sum Rule

Sum Rule: S'pose that each element of a collection S is one of k types, and

- There are n_{j} elements of type j
- No element can be of more than one type.

Then $|S|=n_{1}+\cdots+n_{k}$.

Equivalent Form: If $S=A_{1} \cup \cdots \cup A_{k}$ where $A_{i} \cap A_{j}$ for $i \neq j$ then $|S|=\left|A_{1}\right|+\cdots+\left|A_{k}\right|$.

Example: How many binary sequences b of length 6 begin with 01 or 001 ?

