Introduction to Decision Sciences Lecture 9

Andrew Nobel

October 10, 2017

Consequences of Bezout's Theorem

Corollary: Suppose $a, b, c \in \mathbb{N}_+$. If $a \mid bc$ and gcd(a, b) = 1 then $a \mid c$

Proposition: If *p* is prime and $p \mid a_1 \cdots a_n$ then *p* divides some a_i .

Fact: If p is prime and 0 < k < p then $p \mid {p \choose k}$

FTA (Uniqueness): Suppose that $n \ge 1$ and p_1, \ldots, p_r and q_1, \ldots, q_s are primes such that

$$n = p_1 \cdots p_r = q_1 \cdots q_s.$$

Then r = s and q_1, \ldots, q_r is just a rearrangement of p_1, \ldots, p_r .

Mathematical Induction

Overview of Mathematical Induction

Given: Propositional function P(n) with domain $\mathbb{N}_{+} = \{1, 2, ...\}$

Induction: Proof strategy to establish that P(n) is true for every n

Mathematical basis of induction is the *well ordering property*, an axiom of the natural numbers \mathbb{N}_+ that states

• Every non-empty set $S \subseteq \mathbb{N}_+$ has a smallest element

Mathematical Induction

Given: Propositional function P(n) with domain \mathbb{N}_+

```
Basis step: Show that P(1) is true
```

Inductive step: Show that $P(k) \rightarrow P(k+1)$ is true for every $k \ge 1$

- ▶ assume that *P*(*k*) is true "inductive hypothesis"
- establish that P(k+1) is true

Conclusion: P(n) is true for every $n \in \mathbb{N}_+$

We can view induction as a (new) rule of inference, namely,

$$[P(1) \land \forall k (P(k) \to P(k+1))] \to \forall n P(n)$$

Validity of Induction

Informal: Ladder/Dominos

- P(1) is true by Basis step
- ▶ $P(1) \rightarrow P(2)$ is true by Inductive step, so P(2) is true
- ▶ $P(2) \rightarrow P(3)$ is true by Inductive step, so P(3) is true
- ▶ $P(3) \rightarrow P(4)$ is true by Inductive step, so P(4) is true
- and so on...

Conclude: P(n) is true for every n

Validity of Induction

Formal: Suppose that basis and inductive steps hold but $\forall n P(n)$ is F

- Then $S = \{n : P(n) \text{ is } F\}$ is non-empty
- ▶ By well-ordering, S has smallest element m
- By Basis step, P(1) is true so $m \ge 2$
- Definition of S implies P(m-1) is T and we know $m-1 \ge 1$
- Inductive step then implies P(m) is T, a contradiction
- Conclude that $\forall n P(n)$ is T

Examples

Example 1: Sum of first n odd integers is n^2 . To show: $\forall n P(n)$, where

$$P(n)$$
 is $1 + 3 + \dots + (2n - 1) = n^2$

Example 2: Sum of first *n* perfect squares. To show $\forall n P(n)$, where

$$P(n)$$
 is $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

Example 3: If $n \ge 1$ is odd then $8 | n^2 - 1$. To show: $\forall m \ge 0 P(m)$, where

P(m) is $8 | (2m+1)^2 - 1$

Fermat's Little Theorem

Theorem: If p is prime and $r \ge 0$ then $p | r^p - r$ (*)

Binomial Theorem: For all $a, b \in \mathbb{R}$ and $n \ge 0$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Harmonic Numbers

Definition: The *n*th harmonic number is the sum

$$H_m = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{m}$$

Fact: For each $n \ge 0, H_{2^n} \ge 1 + n/2$

Corollaries:

- H_n tends to infinity as n tends to infinity
- $H_n \ge 1 + \lfloor \log_2 n \rfloor / 2$ for each $n \ge 1$

Theorem: $H_n - \ln n \rightarrow \gamma = .577...$ (Euler's constant) as $n \rightarrow \infty$

Induction with a Stronger Inductive Hypothesis.

Given: Propositional function P(n) with domain \mathbb{N}_+ .

Basis step: Show that P(1) is T

Inductive step: Show that $P(1) \land \cdots \land P(k) \rightarrow P(k+1)$ is T for each $k \ge 1$.

- ▶ assume that $P(1) \land \cdots \land P(k)$ is T "strong inductive hypothesis"
- establish that P(k+1) is true

Conclusion: P(n) is true for every $n \in \mathbb{N}_+$

We can view strong induction as a (new) rule of inference

 $[P(1) \land \forall k (P(1) \land \dots \land P(k) \to P(k+1))] \to \forall n P(n)$

Formal validity of strong induction follows from well-ordering principle.

Ex. Prime Factorization

Thm: Every integer $n \ge 2$ can be written as a product of primes.

Proof: Strong induction. Propositional function: for $n \ge 2$ let

P(n) = n can be written as a product of primes

Basis: P(2) is true as 2 is prime.

Induction: Suppose that $P(2), P(3), \ldots, P(k)$ are true.

- Case 1: Suppose k + 1 is prime
- Case 2: Suppose k + 1 is composite.

Ex. Piles of Stones

Given: Pile of $n \ge 2$ stones

- split pile into two piles of size $r, s \ge 1$ with r + s = n
- compute product rs of pile sizes
- continue splitting piles into smaller ones until every pile has one stone

Claim: No matter how piles split, sum of products rs over splits is n(n-1)/2

Proof: Strong induction. Propositional function: for $n \ge 2$ let

P(n) = starting with *n* stones, sum of products is n(n-1)/2

Basis: Consider P(2)

Induction: Suppose that $P(2), P(3), \ldots, P(k)$ are T.

Basics of Counting

Product Rule

Product Rule: Suppose that the elements of a collection S can be specified by a sequence of k steps such that

- There are n_j possibilities at step j
- ► The selections made at steps 1,..., j do not affect the number of possibilities at step j + 1

Then S has $n_1 \cdot n_2 \cdots n_k$ elements.

Example: Cartesian product of sets A_1, \ldots, A_k is

$$A_1 \times \cdots \times A_k = \{(a_1, \ldots, a_k) : a_1 \in A_1, \ldots, a_k \in A_k\}$$

By product rule $|A_1 \times \cdots \times A_k| = |A_1| \cdots |A_k|$

Example: Counting Functions

Given: Finite sets $A = \{a_1, ..., a_m\}$ and $B = \{b_1, ..., b_n\}$.

Qu 1: What is the number of functions $f : A \rightarrow B$?

Qu 2: What is the number of one-to-one functions $f : A \rightarrow B$?

Qu 3: What is the number of onto functions $f : A \rightarrow B$?

Indicator Functions

Definition: The indicator function of a proposition q is given by

$$I(q) = \begin{cases} 1 & \text{if } q \text{ is true} \\ 0 & \text{if } q \text{ is false} \end{cases}$$

Example: Find $|2^{S}|$ for $S = \{s_1, \ldots, s_n\}$ finite

Define function $f: 2^S \to \{0, 1\}^n$ from subsets of S to binary n-tuples by

$$f(A) = (I(s_1 \in A), I(s_2 \in A), \dots, I(s_n \in A))$$

Can check that f() is one-to-one and onto, so

$$|2^{S}| = |\{0,1\}^{n}| = 2^{n} = 2^{|S|}$$

Sum Rule

Sum Rule: S'pose that each element of a collection S is one of k types, and

- There are n_j elements of type j
- No element can be of more than one type.

Then $|S| = n_1 + \cdots + n_k$.

Equivalent Form: If $S = A_1 \cup \cdots \cup A_k$ where $A_i \cap A_j$ for $i \neq j$ then $|S| = |A_1| + \cdots + |A_k|$.

Example: How many binary sequences b of length 6 begin with 01 or 001?