Introduction to Decision Sciences
 Lecture 8

Andrew Nobel

October 4, 2017

Divisibility

Factors and Multiples

Definition: Let $a, b \in \mathbb{Z}$ with $a \neq 0$. We say a divides b, written $a \mid b$, if $b=a c$ for some $c \in \mathbb{Z}$.

- a is a factor of b
- b is a multiple of a

Fact 1: Let $a, b, c \in \mathbb{Z}$
(a) If $a \mid b$ and $a \mid c$ then $a \mid(b+c)$
(b) If $a \mid b$ and $b \mid c$ then $a \mid c$
(c) If $a \mid b$ then $a \mid b c$ for all $c \in \mathbb{Z}$

Corollary 2: If $a \mid b$ and $a \mid c$ then $a \mid m b+n c$ for all $m, n \in \mathbb{Z}$

Division Algorithm

Fact: Let $d \geq 1$ be a divisor. If $a \in \mathbb{Z}$ then there exists a unique quotient $q \in \mathbb{Z}$ and remainder $0 \leq r<d$ such that

$$
\begin{equation*}
a=q d+r \tag{0.1}
\end{equation*}
$$

In this case we say " r equals a modulo d ", written $r=a \bmod d$, meaning that r is the remainder when a is divided by d.

Proof: For each $k \in \mathbb{Z}$ let A_{k} be the interval $\{k d+r: 0 \leq r<d\}$. Then

- $\mathbb{Z}=\bigcup_{k \in \mathbb{Z}} A_{k}$ (the intervals cover the integers)
- $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$ (the intervals don't overlap)

Thus every $a \in \mathbb{Z}$ is in a unique interval A_{q}, which implies (0.1) for some $0 \leq r<d$.

Modular Arithmetic

Definition: Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}_{+}$.

- a is congruent to $b \bmod m$, written $a \equiv b(\bmod m)$, if $m \mid(a-b)$

Idea: We can walk from a to b (or from b to a) by taking steps of size m.

Example: The set of integers equivalent to $3 \bmod 5$ is

$$
\{k: k \equiv 3(\bmod 5)\}=\{\ldots,-7,-2,3,8,13, \ldots\}
$$

Fact: $a \equiv b(\bmod m)$ iff $a \bmod m=b \bmod m$, that is, a and b have same remainder when divided by m.

Basic Properties of Modular Arithmetic

Fact 1: $a \equiv b(\bmod m)$ iff $a=b+k m$ for some $k \in \mathbb{Z}$

Fact 2: If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then
(a) $a+c \equiv(b+d)(\bmod m)$
(b) $a c \equiv(b d)(\bmod m)$

Corollary 3

- $(a+b) \bmod m=((a \bmod m)+(b \bmod m)) \bmod m$
- $(a b) \bmod m=((a \bmod m)(b \bmod m)) \bmod m$

Prime Numbers

Prime Numbers

Definition: An integer $n \geq 2$ is prime if it is divisible only be 1 and itself. Otherwise, it is composite.

Examples

- The number 2 is prime, the only even prime.
- The numbers $3,5,7,11,13,17,19,23, \ldots$ are prime
- The numbers $4,6,8,9,10,12, \ldots$ are composite

Prime Factorization

Fundamental Theorem of Arithmetic: Every integer $n \geq 2$ is prime or can be expressed uniquely as a product of primes, called the prime factors of n.

In other words, for every integer $n \geq 2$ there exist $r \geq 1$, primes p_{1}, \ldots, p_{r}, and integers $b_{1}, \ldots, b_{r} \geq 1$ such that

$$
n=p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}
$$

and this representation of n as a product of primes is unique.

Corollary: There are infinitely many primes.

More on Primes

Fact: If n is composite then it has a prime factor less than or equal to \sqrt{n}

Example: Show that 127 is prime

Prime Number Theorem

Qu: How frequently to primes occur among integers $1,2, \ldots, n$?

Definition: For $n \geq 1$ let $\pi(n)=$ number of primes among $1,2, \ldots, n$

Prime Number Theorem: As n tends to infinity,

$$
\frac{\pi(n)}{(n / \ln n)} \rightarrow 1 \quad \text { or equivalently } \pi(n) \sim \frac{n}{\ln n}
$$

Examples: $\pi(100) \approx 22, \pi(1000) \approx 145, \pi(10,000) \approx 1086$

By contrast, number of perfect squares among $1,2, \ldots, n$ is roughly \sqrt{n}.

Conjectures Concerning Primes

Unsolved

- Every even integer $n \geq 4$ is the sum of two primes.
- There are infinitely many primes of the form $p=n^{2}+1$, some $n \in \mathbb{N}$.
- There are infinitely many primes p such that $p+2$ is also prime.

Solved

- The primes contain arbitrarily long arithmetic sequences, i.e., sequences of the form $a, a+d, \ldots, a+k d$ (Green and Tau, 2006).

Greatest Common Divisor

Greatest Common Divisor

Definition: The greatest common divisor of $a, b \in \mathbb{Z}$, written $\operatorname{gcd}(a, b)$, is the largest integer d such that $d \mid a$ and $d \mid b$.

Claim 1: $\operatorname{gcd}(a, b)$ is the largest element of the set $S=\{d: d \mid a\} \cap\{d: d \mid b\}$

Claim 2: $\operatorname{gcd}(a, b)$ is the unique integer $d \geq 1$ such that

- $d \mid a$ and $d \mid b$
- if $c \mid a$ and $c \mid b$ then $c \mid d$

GCD and Factorization

Let $a, b \in \mathbb{N}_{+}$. By the fundamental theorem of arithmetic there exist primes p_{1}, \ldots, p_{m} and integers a_{1}, \ldots, a_{m} and $b_{1}, \ldots, b_{m} \geq 0$ such that

$$
a=p_{1}^{a_{1}} \cdots p_{m}^{a_{m}} \quad \text { and } \quad b=p_{1}^{b_{1}} \cdots p_{m}^{b_{m}}
$$

Claim: $\operatorname{gcd}(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} \ldots p_{m}^{\min \left(a_{m}, b_{m}\right)}$

Definition

- a, b are relatively prime if $\operatorname{gcd}(a, b)=1$
- a_{1}, \ldots, a_{n} are pairwise relatively prime if $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ for $i \neq j$

Least Common Multiple

Definition: The least common multiple of $a, b \in \mathbb{N}_{+}$, written $\operatorname{Icm}(a, b)$, is the smallest integer r such that $a \mid r$ and $b \mid r$.

Fact: Let $a, b \in \mathbb{N}_{+}$with prime factorizations

$$
a=p_{1}^{a_{1}} \cdots p_{m}^{a_{m}} \text { and } b=p_{1}^{b_{1}} \cdots p_{m}^{b_{m}}
$$

(1) $1 \leq \operatorname{Icm}(a, b) \leq a b$ is always well defined
(2) $\operatorname{Icm}(a, b)=p_{1}^{\max \left(a_{1}, b_{1}\right)} \cdots p_{m}^{\max \left(a_{m}, b_{m}\right)}$
(3) $a b=\operatorname{Icm}(a, b) \operatorname{gcd}(a, b)$

The Euclidean Algorithm

Goal: Find $\operatorname{gcd}(a, b)$ without using prime factorization of a, b

Fact: If $a=b q+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Algorithm: To find $\operatorname{gcd}\left(r_{0}, r_{1}\right)$ with $r_{0} \geq r_{1} \geq 1$ proceed as follows

- By division algorithm $r_{0}=r_{1} q_{1}+r_{2}$ with $0 \leq r_{2}<r_{1}$
- By division algorithm $r_{1}=r_{2} q_{2}+r_{3}$ with $0 \leq r_{3}<r_{2}$
- Continue until $r_{m-1}=q_{m} r_{m}$ (remainder is zero)
- By Fact, $\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\cdots=\operatorname{gcd}\left(r_{m-1}, r_{m}\right)=r_{m}$

Bezout's Theorem

Theorem: If $a, b \in \mathbb{N}_{+}$then $\operatorname{gcd}(a, b)=a s_{0}+b t_{0}$ for some $s_{0}, t_{0} \in \mathbb{Z}$.
Proof: Define the set $S=\{a s+b t: s, t \in \mathbb{Z}\}$.

- Note that $a, b \in S$.
- Let $c=a s_{0}+b t_{0}$ be the smallest positive element of S.

Claim: $c=\operatorname{gcd}(a, b)$. It suffices to show that
(a) c is a common divisor of a, b, that is, $c \mid a$ and $c \mid b$
(b) If $d \mid a$ and $d \mid b$ then $d \mid c$. (Clear from definition of c.)

Consequences of Bezout's Theorem

Corollary: Suppose $a, b, c \in \mathbb{N}_{+}$. If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$

Proposition: If p is prime and $p \mid a_{1} \cdots a_{n}$ then p divides some a_{i}.

Fact: If p is prime and $0<k<p$ then $p \left\lvert\,\binom{ p}{k}\right.$

FTA (Uniqueness): Suppose that $n \geq 1$ and p_{1}, \ldots, p_{r} and q_{1}, \ldots, q_{s} are primes such that

$$
n=p_{1} \cdots p_{r}=q_{1} \cdots q_{s}
$$

Then $r=s$ and q_{1}, \ldots, q_{r} is just a rearrangement of p_{1}, \ldots, p_{r}.

Mathematical Induction

Overview of Mathematical Induction

Given: Propositional function $P(n)$ with domain $\mathbb{N}_{+}=\{1,2, \ldots\}$

Induction: Proof strategy to establish that $P(n)$ is true for every n

Mathematical basis of induction is the well ordering property, an axiom of the natural numbers \mathbb{N}_{+}that states

- Every non-empty set $S \subseteq \mathbb{N}_{+}$has a smallest element

Mathematical Induction

Given: Propositional function $P(n)$ with domain \mathbb{N}_{+}

Basis step: Show that $P(1)$ is true

Inductive step: Show that $P(k) \rightarrow P(k+1)$ is true for every $k \geq 1$

- assume that $P(k)$ is true "inductive hypothesis"
- establish that $P(k+1)$ is true

Conclusion: $P(n)$ is true for every $n \in \mathbb{N}_{+}$

We can view induction as a (new) rule of inference, namely,

$$
[P(1) \wedge \forall k(P(k) \rightarrow P(k+1))] \rightarrow \forall n P(n)
$$

Validity of Induction

Informal: Ladder/Dominos

- $P(1)$ is true by Basis step
- $P(1) \rightarrow P(2)$ is true by Inductive step, so $P(2)$ is true
- $P(2) \rightarrow P(3)$ is true by Inductive step, so $P(3)$ is true
- $P(3) \rightarrow P(4)$ is true by Inductive step, so $P(4)$ is true
- and so on...

Conclude: $P(n)$ is true for every n

Validity of Induction

Formal: Suppose that basis and inductive steps hold but $\forall n P(n)$ is F

- Then $S=\{n: P(n)$ is F$\}$ is non-empty
- By well-ordering, S has smallest element m
- By Basis step, $P(1)$ is true so $m \geq 2$
- Definition of S implies $P(m-1)$ is T and we know $m-1 \geq 1$
- Inductive step then implies $P(m)$ is T , a contradiction
- Conclude that $\forall n P(n)$ is T

