Introduction to Decision Sciences Lecture 8

Andrew Nobel

October 4, 2017

Divisibility

Factors and Multiples

Definition: Let $a, b \in \mathbb{Z}$ with $a \neq 0$. We say a *divides* b, written a|b, if b = ac for some $c \in \mathbb{Z}$.

- a is a factor of b
- \blacktriangleright b is a multiple of a

Fact 1: Let $a, b, c \in \mathbb{Z}$

- (a) If a|b and a|c then a|(b+c)
- (b) If a|b and b|c then a|c
- (c) If a|b then a|bc for all $c \in \mathbb{Z}$

Corollary 2: If a|b and a|c then a|mb + nc for all $m, n \in \mathbb{Z}$

Division Algorithm

Fact: Let $d \ge 1$ be a *divisor*. If $a \in \mathbb{Z}$ then there exists a unique *quotient* $q \in \mathbb{Z}$ and *remainder* $0 \le r < d$ such that

$$a = q d + r \tag{0.1}$$

In this case we say "r equals a modulo d", written $r = a \mod d$, meaning that r is the remainder when a is divided by d.

Proof: For each $k \in \mathbb{Z}$ let A_k be the interval $\{kd + r : 0 \le r < d\}$. Then

- $\mathbb{Z} = \bigcup_{k \in \mathbb{Z}} A_k$ (the intervals cover the integers)
- $A_i \cap A_j = \emptyset$ if $i \neq j$ (the intervals don't overlap)

Thus every $a \in \mathbb{Z}$ is in a unique interval A_q , which implies (0.1) for some $0 \leq r < d$.

Modular Arithmetic

Definition: Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{N}_+$.

▶ *a* is *congruent* to *b* mod *m*, written $a \equiv b \pmod{m}$, if $m \mid (a - b)$

Idea: We can walk from a to b (or from b to a) by taking steps of size m.

Example: The set of integers equivalent to 3 mod 5 is

$$\{k : k \equiv 3 \pmod{5}\} = \{\dots, -7, -2, 3, 8, 13, \dots\}$$

Fact: $a \equiv b \pmod{m}$ iff $a \mod m = b \mod m$, that is, $a \mod b$ have same remainder when divided by m.

Basic Properties of Modular Arithmetic

Fact 1: $a \equiv b \pmod{m}$ iff a = b + km for some $k \in \mathbb{Z}$

Fact 2: If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then

(a)
$$a + c \equiv (b + d) \pmod{m}$$

(b) $ac \equiv (bd) \pmod{m}$

Corollary 3

- $\blacktriangleright (a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
- $\blacktriangleright (a b) \mod m = ((a \mod m) (b \mod m)) \mod m$

Prime Numbers

Prime Numbers

Definition: An integer $n \ge 2$ is *prime* if it is divisible only be 1 and itself. Otherwise, it is *composite*.

Examples

- ▶ The number 2 is prime, the only even prime.
- ▶ The numbers 3, 5, 7, 11, 13, 17, 19, 23, ... are prime
- The numbers $4, 6, 8, 9, 10, 12, \ldots$ are composite

Fundamental Theorem of Arithmetic: Every integer $n \ge 2$ is prime or can be expressed uniquely as a product of primes, called the *prime factors* of n.

In other words, for every integer $n \ge 2$ there exist $r \ge 1$, primes p_1, \ldots, p_r , and integers $b_1, \ldots, b_r \ge 1$ such that

$$n = p_1^{b_1} \cdots p_r^{b_r}$$

and this representation of n as a product of primes is unique.

Corollary: There are infinitely many primes.

Fact: If n is composite then it has a prime factor less than or equal to \sqrt{n}

Example: Show that 127 is prime

Prime Number Theorem

Qu: How frequently to primes occur among integers $1, 2, \ldots, n$?

Definition: For $n \ge 1$ let $\pi(n)$ = number of primes among 1, 2, ..., n

Prime Number Theorem: As n tends to infinity,

$$\frac{\pi(n)}{(n/\ln n)} \to 1$$
 or equivalently $\pi(n) \sim \frac{n}{\ln n}$

Examples: $\pi(100) \approx 22$, $\pi(1000) \approx 145$, $\pi(10,000) \approx 1086$

By contrast, number of perfect squares among 1, 2, ..., n is roughly \sqrt{n} .

Conjectures Concerning Primes

Unsolved

- Every even integer $n \ge 4$ is the sum of two primes.
- There are infinitely many primes of the form $p = n^2 + 1$, some $n \in \mathbb{N}$.
- There are infinitely many primes p such that p + 2 is also prime.

Solved

▶ The primes contain arbitrarily long arithmetic sequences, i.e., sequences of the form *a*, *a* + *d*, ..., *a* + *kd* (Green and Tau, 2006).

Greatest Common Divisor

Greatest Common Divisor

Definition: The greatest common divisor of $a, b \in \mathbb{Z}$, written gcd(a, b), is the largest integer d such that $d \mid a$ and $d \mid b$.

Claim 1: gcd(a, b) is the largest element of the set $S = \{d : d \mid a\} \cap \{d : d \mid b\}$

Claim 2: gcd(a, b) is the unique integer $d \ge 1$ such that

- $\blacktriangleright d \mid a \text{ and } d \mid b$
- if $c \mid a$ and $c \mid b$ then $c \mid d$

GCD and Factorization

Let $a, b \in \mathbb{N}_+$. By the fundamental theorem of arithmetic there exist primes p_1, \ldots, p_m and integers a_1, \ldots, a_m and $b_1, \ldots, b_m \ge 0$ such that

$$a = p_1^{a_1} \cdots p_m^{a_m}$$
 and $b = p_1^{b_1} \cdots p_m^{b_m}$

Claim:
$$gcd(a,b) = p_1^{\min(a_1,b_1)} \cdots p_m^{\min(a_m,b_m)}$$

Definition

• a, b are relatively prime if gcd(a, b) = 1

▶ a_1, \ldots, a_n are pairwise relatively prime if $gcd(a_i, a_j) = 1$ for $i \neq j$

Least Common Multiple

Definition: The least common multiple of $a, b \in \mathbb{N}_+$, written lcm(a, b), is the smallest integer r such that $a \mid r$ and $b \mid r$.

Fact: Let $a, b \in \mathbb{N}_+$ with prime factorizations

$$a = p_1^{a_1} \cdots p_m^{a_m}$$
 and $b = p_1^{b_1} \cdots p_m^{b_m}$

(1) $1 \leq \text{lcm}(a, b) \leq a b$ is always well defined

(2) $\operatorname{lcm}(a,b) = p_1^{\max(a_1,b_1)} \cdots p_m^{\max(a_m,b_m)}$

(3) $a b = \operatorname{lcm}(a, b) \operatorname{gcd}(a, b)$

The Euclidean Algorithm

Goal: Find gcd(a, b) without using prime factorization of a, b

Fact: If a = bq + r then gcd(a, b) = gcd(b, r).

Algorithm: To find $gcd(r_0, r_1)$ with $r_0 \ge r_1 \ge 1$ proceed as follows

- By division algorithm $r_0 = r_1q_1 + r_2$ with $0 \le r_2 < r_1$
- By division algorithm $r_1 = r_2q_2 + r_3$ with $0 \le r_3 < r_2$
- Continue until $r_{m-1} = q_m r_m$ (remainder is zero)
- ▶ By Fact, $gcd(r_0, r_1) = gcd(r_1, r_2) = \cdots = gcd(r_{m-1}, r_m) = r_m$

Bezout's Theorem

Theorem: If $a, b \in \mathbb{N}_+$ then $gcd(a, b) = as_0 + bt_0$ for some $s_0, t_0 \in \mathbb{Z}$.

Proof: Define the set $S = \{as + bt : s, t \in \mathbb{Z}\}.$

- ▶ Note that $a, b \in S$.
- Let $c = as_0 + bt_0$ be the smallest positive element of S.

Claim: c = gcd(a, b). It suffices to show that

(a) c is a common divisor of a, b, that is, $c \mid a$ and $c \mid b$

(b) If $d \mid a$ and $d \mid b$ then $d \mid c$. (Clear from definition of c.)

Consequences of Bezout's Theorem

Corollary: Suppose $a, b, c \in \mathbb{N}_+$. If $a \mid bc$ and gcd(a, b) = 1 then $a \mid c$

Proposition: If *p* is prime and $p \mid a_1 \cdots a_n$ then *p* divides some a_i .

Fact: If p is prime and 0 < k < p then $p \mid {p \choose k}$

FTA (Uniqueness): Suppose that $n \ge 1$ and p_1, \ldots, p_r and q_1, \ldots, q_s are primes such that

$$n = p_1 \cdots p_r = q_1 \cdots q_s.$$

Then r = s and q_1, \ldots, q_r is just a rearrangement of p_1, \ldots, p_r .

Mathematical Induction

Overview of Mathematical Induction

Given: Propositional function P(n) with domain $\mathbb{N}_{+} = \{1, 2, ...\}$

Induction: Proof strategy to establish that P(n) is true for every n

Mathematical basis of induction is the *well ordering property*, an axiom of the natural numbers \mathbb{N}_+ that states

• Every non-empty set $S \subseteq \mathbb{N}_+$ has a smallest element

Mathematical Induction

Given: Propositional function P(n) with domain \mathbb{N}_+

```
Basis step: Show that P(1) is true
```

Inductive step: Show that $P(k) \rightarrow P(k+1)$ is true for every $k \ge 1$

- ▶ assume that *P*(*k*) is true "inductive hypothesis"
- establish that P(k+1) is true

Conclusion: P(n) is true for every $n \in \mathbb{N}_+$

We can view induction as a (new) rule of inference, namely,

 $[P(1) \land \forall k \, (P(k) \to P(k+1))] \to \forall n \, P(n)$

Validity of Induction

Informal: Ladder/Dominos

- P(1) is true by Basis step
- ▶ $P(1) \rightarrow P(2)$ is true by Inductive step, so P(2) is true
- ▶ $P(2) \rightarrow P(3)$ is true by Inductive step, so P(3) is true
- ▶ $P(3) \rightarrow P(4)$ is true by Inductive step, so P(4) is true
- and so on...

Conclude: P(n) is true for every n

Validity of Induction

Formal: Suppose that basis and inductive steps hold but $\forall n P(n)$ is F

- Then $S = \{n : P(n) \text{ is } F\}$ is non-empty
- ▶ By well-ordering, S has smallest element m
- By Basis step, P(1) is true so $m \ge 2$
- Definition of S implies P(m-1) is T and we know $m-1 \ge 1$
- Inductive step then implies P(m) is T, a contradiction
- Conclude that $\forall n P(n)$ is T