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Divisibility



Factors and Multiples

Definition: Let a, b ∈ Z with a 6= 0. We say a divides b, written a|b, if b = ac
for some c ∈ Z.

I a is a factor of b

I b is a multiple of a

Fact 1: Let a, b, c ∈ Z

(a) If a|b and a|c then a|(b+ c)

(b) If a|b and b|c then a|c

(c) If a|b then a|bc for all c ∈ Z

Corollary 2: If a|b and a|c then a|mb+ nc for all m,n ∈ Z



Division Algorithm

Fact: Let d ≥ 1 be a divisor. If a ∈ Z then there exists a unique quotient
q ∈ Z and remainder 0 ≤ r < d such that

a = q d+ r (0.1)

In this case we say “r equals a modulo d”, written r = a mod d, meaning that
r is the remainder when a is divided by d.

Proof: For each k ∈ Z let Ak be the interval {kd+ r : 0 ≤ r < d}. Then

I Z =
⋃

k∈ZAk (the intervals cover the integers)

I Ai ∩Aj = ∅ if i 6= j (the intervals don’t overlap)

Thus every a ∈ Z is in a unique interval Aq, which implies (0.1) for some
0 ≤ r < d.



Modular Arithmetic

Definition: Let a, b ∈ Z and m ∈ N+.

I a is congruent to b mod m, written a ≡ b (mod m), if m | (a− b)

Idea: We can walk from a to b (or from b to a) by taking steps of size m.

Example: The set of integers equivalent to 3 mod 5 is

{k : k ≡ 3 (mod 5)} = {. . . ,−7,−2, 3, 8, 13, . . .}

Fact: a ≡ b (modm) iff amodm = bmodm, that is, a and b have same
remainder when divided by m.



Basic Properties of Modular Arithmetic

Fact 1: a ≡ b (mod m) iff a = b+ km for some k ∈ Z

Fact 2: If a ≡ b (mod m) and c ≡ d (mod m) then

(a) a+ c ≡ (b+ d) (mod m)

(b) ac ≡ (b d) (mod m)

Corollary 3

I (a+ b)mod m = ((amod m) + (bmod m))mod m

I (a b)mod m = ((amod m) (bmod m))mod m



Prime Numbers



Prime Numbers

Definition: An integer n ≥ 2 is prime if it is divisible only be 1 and itself.
Otherwise, it is composite.

Examples

I The number 2 is prime, the only even prime.

I The numbers 3, 5, 7, 11, 13, 17, 19, 23, . . . are prime

I The numbers 4, 6, 8, 9, 10, 12, . . . are composite



Prime Factorization

Fundamental Theorem of Arithmetic: Every integer n ≥ 2 is prime or can
be expressed uniquely as a product of primes, called the prime factors of n.

In other words, for every integer n ≥ 2 there exist r ≥ 1, primes p1, . . . , pr,
and integers b1, . . . , br ≥ 1 such that

n = pb11 · · · p
br
r

and this representation of n as a product of primes is unique.

Corollary: There are infinitely many primes.



More on Primes

Fact: If n is composite then it has a prime factor less than or equal to
√
n

Example: Show that 127 is prime



Prime Number Theorem

Qu: How frequently to primes occur among integers 1, 2, . . . , n?

Definition: For n ≥ 1 let π(n) = number of primes among 1, 2, . . . , n

Prime Number Theorem: As n tends to infinity,

π(n)

(n/ lnn)
→ 1 or equivalently π(n) ∼ n

lnn

Examples: π(100) ≈ 22, π(1000) ≈ 145, π(10, 000) ≈ 1086

By contrast, number of perfect squares among 1, 2, . . . , n is roughly
√
n.



Conjectures Concerning Primes

Unsolved

I Every even integer n ≥ 4 is the sum of two primes.

I There are infinitely many primes of the form p = n2 + 1, some n ∈ N.

I There are infinitely many primes p such that p+ 2 is also prime.

Solved

I The primes contain arbitrarily long arithmetic sequences, i.e., sequences
of the form a, a+ d, . . . , a+ kd (Green and Tau, 2006).



Greatest Common Divisor



Greatest Common Divisor

Definition: The greatest common divisor of a, b ∈ Z, written gcd(a, b), is the
largest integer d such that d | a and d | b.

Claim 1: gcd(a, b) is the largest element of the set S = {d : d | a} ∩ {d : d | b}

Claim 2: gcd(a, b) is the unique integer d ≥ 1 such that

I d | a and d | b

I if c | a and c | b then c | d



GCD and Factorization

Let a, b ∈ N+. By the fundamental theorem of arithmetic there exist primes
p1, . . . , pm and integers a1, . . . , am and b1, . . . , bm ≥ 0 such that

a = pa1
1 · · · p

am
m and b = pb11 · · · p

bm
m

Claim: gcd(a, b) = p
min(a1,b1)
1 · · · pmin(am,bm)

m

Definition

I a, b are relatively prime if gcd(a, b) = 1

I a1, . . . , an are pairwise relatively prime if gcd(ai, aj) = 1 for i 6= j



Least Common Multiple

Definition: The least common multiple of a, b ∈ N+, written lcm(a, b), is the
smallest integer r such that a | r and b | r.

Fact: Let a, b ∈ N+ with prime factorizations

a = pa1
1 · · · p

am
m and b = pb11 · · · p

bm
m

(1) 1 ≤ lcm(a, b) ≤ a b is always well defined

(2) lcm(a, b) = p
max(a1,b1)
1 · · · pmax(am,bm)

m

(3) a b = lcm(a, b) gcd(a, b)



The Euclidean Algorithm

Goal: Find gcd(a, b) without using prime factorization of a, b

Fact: If a = bq + r then gcd(a, b) = gcd(b, r).

Algorithm: To find gcd(r0, r1) with r0 ≥ r1 ≥ 1 proceed as follows

I By division algorithm r0 = r1q1 + r2 with 0 ≤ r2 < r1

I By division algorithm r1 = r2q2 + r3 with 0 ≤ r3 < r2

I Continue until rm−1 = qmrm (remainder is zero)

I By Fact, gcd(r0, r1) = gcd(r1, r2) = · · · = gcd(rm−1, rm) = rm



Bezout’s Theorem

Theorem: If a, b ∈ N+ then gcd(a, b) = as0 + bt0 for some s0, t0 ∈ Z.

Proof: Define the set S = {as+ bt : s, t ∈ Z}.

I Note that a, b ∈ S.

I Let c = as0 + bt0 be the smallest positive element of S.

Claim: c = gcd(a, b). It suffices to show that

(a) c is a common divisor of a, b, that is, c | a and c | b

(b) If d | a and d | b then d | c. (Clear from definition of c.)



Consequences of Bezout’s Theorem

Corollary: Suppose a, b, c ∈ N+. If a | bc and gcd(a, b) = 1 then a | c

Proposition: If p is prime and p | a1 · · · an then p divides some ai.

Fact: If p is prime and 0 < k < p then p |
(
p
k

)

FTA (Uniqueness): Suppose that n ≥ 1 and p1, . . . , pr and q1, . . . , qs are
primes such that

n = p1 · · · pr = q1 · · · qs.

Then r = s and q1, . . . , qr is just a rearrangement of p1, . . . , pr.



Mathematical Induction



Overview of Mathematical Induction

Given: Propositional function P (n) with domain N+ = {1, 2, . . .}

Induction: Proof strategy to establish that P (n) is true for every n

Mathematical basis of induction is the well ordering property, an axiom of the
natural numbers N+ that states

I Every non-empty set S ⊆ N+ has a smallest element



Mathematical Induction

Given: Propositional function P (n) with domain N+

Basis step: Show that P (1) is true

Inductive step: Show that P (k)→ P (k + 1) is true for every k ≥ 1

I assume that P (k) is true “inductive hypothesis”

I establish that P (k + 1) is true

Conclusion: P (n) is true for every n ∈ N+

We can view induction as a (new) rule of inference, namely,

[P (1) ∧ ∀k (P (k)→ P (k + 1))] → ∀nP (n)



Validity of Induction

Informal: Ladder/Dominos

I P (1) is true by Basis step

I P (1)→ P (2) is true by Inductive step, so P (2) is true

I P (2)→ P (3) is true by Inductive step, so P (3) is true

I P (3)→ P (4) is true by Inductive step, so P (4) is true

I and so on...

Conclude: P (n) is true for every n



Validity of Induction

Formal: Suppose that basis and inductive steps hold but ∀nP (n) is F

I Then S = {n : P (n) is F} is non-empty

I By well-ordering, S has smallest element m

I By Basis step, P (1) is true so m ≥ 2

I Definition of S implies P (m− 1) is T and we know m− 1 ≥ 1

I Inductive step then implies P (m) is T, a contradiction

I Conclude that ∀nP (n) is T


