Introduction to Decision Sciences Lecture 11

Andrew Nobel

October 24, 2017

Basics of Counting

Product Rule

Product Rule: Suppose that the elements of a collection S can be specified by a sequence of k steps such that

- There are n_j possibilities at step j
- The selections made at steps 1,..., j do not affect the number of possibilities at step j + 1

Then S has $n_1 n_2 \cdots n_k$ elements

Example: Cartesian product of sets A_1, \ldots, A_k is

$$A_1 \times \cdots \times A_k = \{(a_1, \ldots, a_k) : a_1 \in A_1, \ldots, a_k \in A_k\}$$

By product rule $|A_1 \times \cdots \times A_k| = |A_1| \cdots |A_k|$

Example: Counting Functions

Given: Finite sets $A = \{a_1, ..., a_m\}$ and $B = \{b_1, ..., b_n\}$

- 1. What is the number of functions $f : A \rightarrow B$?
- 2. What is the number of one-to-one functions $f : A \rightarrow B$?
- 3. What is the number of onto functions $f : A \rightarrow B$?

Indicator Functions

Definition: The *indicator function* of a proposition q is given by

$$I(q) = \begin{cases} 1 & \text{if } q \text{ is true} \\ 0 & \text{if } q \text{ is false} \end{cases}$$

Example: Find the size of 2^S for a finite set $S = \{s_1, \ldots, s_n\}$

• Define function $f: 2^S \to \{0,1\}^n$ from 2^S to binary *n*-tuples by

$$f(A) = (I(s_1 \in A), I(s_2 \in A), \dots, I(s_n \in A))$$

Can check that f() is one-to-one and onto, so

$$|2^{S}| = |\{0,1\}^{n}| = 2^{n} = 2^{|S|}$$

Sum Rule

Sum Rule: S'pose that each element of a collection S is one of k types, and

- There are n_j elements of type j
- No element can be of more than one type.

Then $|S| = n_1 + \cdots + n_k$

Equivalent Form: If $S = A_1 \cup \cdots \cup A_k$ where $A_i \cap A_j$ for $i \neq j$ then

$$|S| = |A_1| + \dots + |A_k|$$

Example: How many binary sequences b of length 6 begin with 01 or 001?

Inclusion-Exclusion

Fact: If A, B are sets then $|A \cup B| = |A| + |B| - |A \cap B|$.

General Form: For sets A_1, \ldots, A_n

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < \dots < i_{k} \le n} |A_{i_{1}} \cap \dots \cap A_{i_{k}}|$$

Example: How many sequences $b \in \{0, 1\}^8$ begin with 00 or end with 11?

Example: Suppose you have 5 friends who play golf, 8 who play tennis, and 3 who play both. How many of your friends play golf or tennis?

The Pigeonhole Principle

Fact: If k + 1 objects are placed in k boxes then one box must contain at least two objects.

Why? Let $n_j = \#$ objects in box j. If each $n_j \leq 1$ then

$$\sum_{j=1}^{k} n_j \leq \sum_{j=1}^{k} 1 = k < k+1.$$

Examples

- 1. Among 13 people, at least two have their birthday in the same month.
- 2. Among 11 people, at least two have the same last digit in their phone number.
- 3. If $f : A \rightarrow B$ is a function and |B| < |A| then f is not one-to-one

More Elaborate Applications of PHP

Fact: At a party with $n \ge 2$ guests there are at least two people with the same number of friends. (Assume *a* is friends with *b* iff *b* is friends with *a*.)

Why? For $1 \le j \le n$ let $m_j = \#$ friends of guest j at the party

- Case 1: Everybody has at least 1 friend. Then each of m_1, \ldots, m_n is between 1 and n 1. Two of these numbers must be the same
- *Case 2:* Somebody has no friends. Then each of m_1, \ldots, m_n is between 0 and n 2. Two of these numbers must be the same

Triathlon Training (adapted from website of P. Talwalkar)

Gary is training for a triathlon. Over a 30 day period he trains at least once every day, and 45 times in total.

Claim: There is a set of consecutive days when Gary trains exactly 14 times.

Why? For $1 \le j \le 30$ let $s_j = \#$ workouts by end of day j. We know that

 $1 \le s_1 < s_2 < \dots < s_{29} < s_{30} = 45.$

Adding 14 to each term gives $15 \le s_1 + 14 < \cdots < s_{30} + 14 = 59$.

Upshot: The numbers $s_1, ..., s_{30}, s_1 + 14, ..., s_{30} + 14$ lie between 1 and 59

By PHP, two of these 60 numbers are the same, and as the numbers within each group are strictly increasing, there must be some i, j such that

$$s_i = s_j + 14 \iff s_i - s_j = 14$$

Another Application of PHP

Fact: For each $n \geq 1$ there is an $r \geq 1$ s.t. the decimal expansion of rn contains only 0s and 1s

Generalized Pigeon Hole Principle

Generalized PHP: If *N* objects are placed in *k* boxes, then there is a box containing at least $\lceil N/k \rceil$ objects

Proof: Similar to regular PHP.

Example: Among a class of 60 people at least $\lceil 60/5 \rceil = 12$ will receive one of the letter grades A, B, C, D, F.

Example: Rolling a 6-sided die

- 1. How many rolls guarantee that we see some number at least 4 times?
- 2. How many rolls guarantee that we see 1 at least 2 times?

Permutations and Combinations

Permutations

Definition: Let S be a set with n elements

- ▶ A *permutation* of S is an ordered list (arrangement) of its elements
- For r = 1,..., n an r-permutation of S is an ordered list (arrangement) of r elements of S.

Definition: Let P(n, r) = # of *r*-permutations of an *n* element set

Fact: $P(n,r) = n(n-1)\cdots(n-r+1)$

Corollary: P(n,n) = n! and in general P(n,r) = n!/(n-r)!

Combinations

Definition: Let *S* be a set with *n* elements. For $0 \le r \le n$ an *r*-combination of *S* is a (unordered) subset of *S* with *r* elements.

Definition: Let C(n, r) = # of *r*-combinations of an *n* element set

Fact: C(n, 0) = 1 (the empty set) and with convention 0! = 1 we can write

$$C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!} \quad 0 \le r \le n$$

Corollary: C(n, r) = C(n, n - r)

Coin Flipping Example

Example: Flip coin 12 times

Q1: What is the number of possible outcomes with 5 heads?

Let $S = \{1, 2, \dots, 12\}$ be index/position of 12 flips

Outcome with 5 heads obtained as follows:

- ▶ Select 5 positions from S
- Assign H to these positions and T to all other positions

Q2: What is the number of possible outcomes with at least 3 tails?

Q3: Number of possible outcomes with an equal number of heads and tails?

Example: Hat contains 20 cards: 1 red, 5 blue, 14 white. Cards are removed from the hat one at a time and placed side by side, in order.

How many color sequences are there under the following restrictions

- 1. No restrictions
- 2. Red card in position 2
- 3. Blue cards in positions 8, 15, 16
- 4. Blue cards in positions 3, 4 and white cards in positions 8, 9, 10

Binomial Coefficients and Identities

Binomial Theorem

Example

$$(x+y)^{2} = x^{2} + 2xy + y^{2} = {\binom{2}{0}} x^{2}y^{0} + {\binom{2}{1}} x^{1}y^{1} + {\binom{2}{2}} x^{0}y^{1}$$

Example

$$(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 = \sum_{k=0}^3 \binom{3}{k} x^{n-k} y^k$$

Binomial Theorem: For all $x, y \in \mathbb{R}$ and $n \ge 0$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Corollaries of Binomial Theorem

Fact 1:
$$2^n = \sum_{j=0}^n \binom{n}{j}$$

Fact 2:
$$3^n = \sum_{j=0}^n {n \choose j} 2^j$$

Fact 3:
$$\sum_{j=0}^{n} (-1)^{j} {n \choose j} = 0$$

Corollary: Sum of $\binom{n}{i}$ over even j is equal to sum of $\binom{n}{i}$ over odd j

Monotonicity of Binomial Coefficients

Fact: Let $n \ge 1$. Then

•
$$C(n,r) \leq C(n,r+1)$$
 if $r \leq (n-1)/2$

•
$$C(n,r) \ge C(n,r+1)$$
 if $r \ge (n-1)/2$

Idea: Binomial coefficients increase as r goes from 0 to (n - 1)/2, then decrease as r goes from (n - 1)/2 to n.

Pascal's Triangle

Pyramid with *n*th row equal to the binomial coefficients $\binom{n}{0}, \ldots, \binom{n}{n}$

 $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \\ \dots$

Pascal's Identity: If $1 \le k \le n$ then $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.

The identity says that every entry of Pascal's triangle can be obtained by adding the two entries above it.

Using Pascal's Identity

Example: Show that

$$\frac{1}{2} \cdot \binom{2n+2}{n+1} = \binom{2n}{n} + \binom{2n}{n+1}$$

Vandermonde Identity

Vandermonde Identity: If $1 \le r \le m, n$ then

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

Proof: Let $S = \{0, 1\}^n$. For k = 0, ..., r define

•
$$A = \{b \in S \text{ with } r \text{ ones}\}$$

• $A_k = \{b \in S \text{ with } (r - k) \text{ ones in first m bits, } k \text{ ones in last n bits} \}$

Note that

- $\bullet \ A = A_0 \cup A_1 \cup \dots \cup A_r$
- $A_i \cap A_j = \emptyset$ if $i \neq j$

More Identities

Corollary: For $n \ge 1$ we have $\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^{2}$

Fact: If $1 \le r \le n$ then $\binom{n+1}{r+1} = \sum_{k=r}^{n} \binom{k}{r}$

Why? Let $S = \{0, 1\}^{n+1}$. For k = r, ..., n define

• $A_k = \{b \in S \text{ having } (r+1) \text{ ones, with last one in positions } k+1\}$

•
$$A = \{b \in S \text{ with } (r+1) \text{ ones}\}$$

Note that

 $\blacktriangleright A = A_r \cup A_1 \cup \dots \cup A_n$

•
$$A_i \cap A_j = \emptyset$$
 if $i \neq j$

More Permutations and Combinations

Permutations of Indistinguishable Objects

Example: How many distinct rearrangements are there of the letters in the word SUPRESS?

Fact: Suppose we are given n objects of k different types where

- there are n_j objects of type j
- objects of the same type are indistinguishable

Then the number of distinct permutations of these objects is given by the *multinomial coefficient*

$$\binom{n}{n_1 \cdots n_k} := \frac{n!}{n_1! \cdots n_k!}$$

The Multinomial Theorem

Theorem: If $n \ge 1$ and $x_1, \ldots, x_m \in \mathbb{R}$ then

$$(x_1 + x_2 + \dots + x_m)^n = \sum_{n_1 + \dots + n_m = n} {n \choose n_1 \cdots n_m} \cdot x_1^{n_1} \cdots x_m^{n_m}$$

Note: The Binomial Theorem is the special case where m = 2.

Objects in Boxes

General Question: How many ways are there to distribute n objects into k boxes?

Four cases: Objects and boxes can be

- distinguishable (labeled)
- indistinguishable (unlabeled)

Case 1: Objects and Boxes are Distinguishable

Qu: How many ways are there to distribute $n = n_1 + \cdots + n_k$ distinguishable objects into *k* distinct boxes so that box *r* has n_r objects?

Ans: Multinomial coefficient

$$\binom{n}{n_1\cdots n_k}$$

Example: Given standard deck of 52 cards, how many ways are there to deal hands of 5 cards to 3 different players?

Example: How many ways are there to place n distinct objects into k distinguishable boxes?

Case 2: Objects Indistinguishable, Boxes Distinguishable

Qu: How many ways are there to place n indistinguishable objects into k distinguishable boxes?

Ans: For $1 \le j \le k$ let $n_j = \#$ objects in box j.

There is a 1:1 correspondence between assignments of objects to boxes and k-tuples (n₁,...,n_k) such that

$$n_j \geq 0$$
 and $\sum_{j=1}^n n_j = n$ (*)

► There is a 1:1 correspondence between k-tuples (n₁,...,n_k) satisfying (*) and the arrangement of k - 1 "bars" and n "stars"

$$(n_1,\ldots,n_k) \Leftrightarrow *\cdots * | *\cdots * | \cdots | *\cdots *$$