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Basics of Counting



Product Rule

Product Rule: Suppose that the elements of a collection S can be specified
by a sequence of k steps such that

I There are nj possibilities at step j

I The selections made at steps 1, . . . , j do not affect the number of
possibilities at step j + 1

Then S has n1 n2 · · ·nk elements

Example: Cartesian product of sets A1, . . . , Ak is

A1 × · · · ×Ak = {(a1, . . . , ak) : a1 ∈ A1, . . . , ak ∈ Ak}

By product rule |A1 × · · · ×Ak| = |A1| · · · |Ak|



Example: Counting Functions

Given: Finite sets A = {a1, . . . , am} and B = {b1, . . . , bn}

1. What is the number of functions f : A→ B?

2. What is the number of one-to-one functions f : A→ B?

3. What is the number of onto functions f : A→ B?



Indicator Functions

Definition: The indicator function of a proposition q is given by

I(q) =

{
1 if q is true
0 if q is false

Example: Find the size of 2S for a finite set S = {s1, . . . , sn}

I Define function f : 2S → {0, 1}n from 2S to binary n-tuples by

f(A) = (I(s1 ∈ A), I(s2 ∈ A), . . . , I(sn ∈ A))

I Can check that f() is one-to-one and onto, so

|2S | = |{0, 1}n| = 2n = 2|S|



Sum Rule

Sum Rule: S’pose that each element of a collection S is one of k types, and

I There are nj elements of type j

I No element can be of more than one type.

Then |S| = n1 + · · ·+ nk

Equivalent Form: If S = A1 ∪ · · · ∪Ak where Ai ∩Aj for i 6= j then

|S| = |A1|+ · · ·+ |Ak|

Example: How many binary sequences b of length 6 begin with 01 or 001?



Inclusion-Exclusion

Fact: If A,B are sets then |A ∪B| = |A|+ |B| − |A ∩B|.

General Form: For sets A1, . . . , An∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =

n∑
k=1

(−1)k−1
∑

1≤i1<···ik≤n

|Ai1 ∩ · · · ∩Aik |

Example: How many sequences b ∈ {0, 1}8 begin with 00 or end with 11?

Example: Suppose you have 5 friends who play golf, 8 who play tennis, and
3 who play both. How many of your friends play golf or tennis?



The Pigeonhole Principle

Fact: If k + 1 objects are placed in k boxes then one box must contain at
least two objects.

Why? Let nj = # objects in box j. If each nj ≤ 1 then

k∑
j=1

nj ≤
k∑

j=1

1 = k < k + 1.

Examples

1. Among 13 people, at least two have their birthday in the same month.

2. Among 11 people, at least two have the same last digit in their
phone number.

3. If f : A→ B is a function and |B| < |A| then f is not one-to-one



More Elaborate Applications of PHP

Fact: At a party with n ≥ 2 guests there are at least two people with the
same number of friends. (Assume a is friends with b iff b is friends with a.)

Why? For 1 ≤ j ≤ n let mj = # friends of guest j at the party

I Case 1: Everybody has at least 1 friend. Then each of m1, . . . ,mn is
between 1 and n− 1. Two of these numbers must be the same

I Case 2: Somebody has no friends. Then each of m1, . . . ,mn is
between 0 and n− 2. Two of these numbers must be the same



Triathlon Training (adapted from website of P. Talwalkar)

Gary is training for a triathlon. Over a 30 day period he trains at least once
every day, and 45 times in total.

Claim: There is a set of consecutive days when Gary trains exactly 14 times.

Why? For 1 ≤ j ≤ 30 let sj = # workouts by end of day j. We know that

1 ≤ s1 < s2 < · · · < s29 < s30 = 45.

Adding 14 to each term gives 15 ≤ s1 + 14 < · · · < s30 + 14 = 59.

Upshot: The numbers s1, . . . , s30, s1 + 14, . . . , s30 + 14 lie between 1 and 59

By PHP, two of these 60 numbers are the same, and as the numbers within
each group are strictly increasing, there must be some i, j such that

si = sj + 14 ⇔ si − sj = 14



Another Application of PHP

Fact: For each n ≥ 1 there is an r ≥ 1 s.t. the decimal expansion of rn
contains only 0s and 1s



Generalized Pigeon Hole Principle

Generalized PHP: If N objects are placed in k boxes, then there is a box
containing at least dN/ke objects

Proof: Similar to regular PHP.

Example: Among a class of 60 people at least d60/5e = 12 will receive one
of the letter grades A, B, C, D, F.

Example: Rolling a 6-sided die

1. How many rolls guarantee that we see some number at least 4 times?

2. How many rolls guarantee that we see 1 at least 2 times?



Permutations and Combinations



Permutations

Definition: Let S be a set with n elements

I A permutation of S is an ordered list (arrangement) of its elements

I For r = 1, . . . , n an r-permutation of S is an ordered list (arrangement)
of r elements of S.

Definition: Let P (n, r) = # of r-permutations of an n element set

Fact: P (n, r) = n (n− 1) · · · (n− r + 1)

Corollary: P (n, n) = n! and in general P (n, r) = n!/(n− r)!



Combinations

Definition: Let S be a set with n elements. For 0 ≤ r ≤ n an r-combination
of S is a (unordered) subset of S with r elements.

Definition: Let C(n, r) = # of r-combinations of an n element set

Fact: C(n, 0) = 1 (the empty set) and with convention 0! = 1 we can write

C(n, r) =

(
n

r

)
=

n!

r! (n− r)!
0 ≤ r ≤ n

Corollary: C(n, r) = C(n, n− r)



Coin Flipping Example

Example: Flip coin 12 times

Q1: What is the number of possible outcomes with 5 heads?

Let S = {1, 2, . . . , 12} be index/position of 12 flips

Outcome with 5 heads obtained as follows:

I Select 5 positions from S

I Assign H to these positions and T to all other positions

Q2: What is the number of possible outcomes with at least 3 tails?

Q3: Number of possible outcomes with an equal number of heads and tails?



Hat with Cards Example

Example: Hat contains 20 cards: 1 red, 5 blue, 14 white. Cards are removed
from the hat one at a time and placed side by side, in order.

How many color sequences are there under the following restrictions

1. No restrictions

2. Red card in position 2

3. Blue cards in positions 8, 15, 16

4. Blue cards in positions 3, 4 and white cards in positions 8, 9, 10



Binomial Coefficients and Identities



Binomial Theorem

Example

(x+ y)2 = x2 + 2xy + y2 =

(
2

0

)
x2y0 +

(
2

1

)
x1y1 +

(
2

2

)
x0y1

Example

(x+ y)3 = x3 + 3x2y + 3xy2 + y3 =

3∑
k=0

(
3

k

)
xn−kyk

Binomial Theorem: For all x, y ∈ R and n ≥ 0

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k



Corollaries of Binomial Theorem

Fact 1: 2n =
∑n

j=0

(
n
j

)

Fact 2: 3n =
∑n

j=0

(
n
j

)
2j

Fact 3:
∑n

j=0(−1)
j
(
n
j

)
= 0

Corollary: Sum of
(
n
j

)
over even j is equal to sum of

(
n
j

)
over odd j



Monotonicity of Binomial Coefficients

Fact: Let n ≥ 1. Then

I C(n, r) ≤ C(n, r + 1) if r ≤ (n− 1)/2

I C(n, r) ≥ C(n, r + 1) if r ≥ (n− 1)/2

Idea: Binomial coefficients increase as r goes from 0 to (n− 1)/2, then
decrease as r goes from (n− 1)/2 to n.



Pascal’s Triangle

Pyramid with nth row equal to the binomial coefficients
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n

)
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(
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)(
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Pascal’s Identity: If 1 ≤ k ≤ n then
(
n+1
k

)
=
(

n
k−1

)
+
(
n
k

)
.

The identity says that every entry of Pascal’s triangle can be obtained by
adding the two entries above it.



Using Pascal’s Identity

Example: Show that

1

2
·

(
2n+ 2

n+ 1

)
=

(
2n

n

)
+

(
2n

n+ 1

)



Vandermonde Identity

Vandermonde Identity: If 1 ≤ r ≤ m,n then(
m+ n

r

)
=

r∑
k=0

(
m

r − k

)(
n

k

)

Proof: Let S = {0, 1}n. For k = 0, . . . , r define

I A = {b ∈ S with r ones}

I Ak = {b ∈ S with (r − k) ones in first m bits, k ones in last n bits}

Note that

I A = A0 ∪A1 ∪ · · · ∪Ar

I Ai ∩Aj = ∅ if i 6= j



More Identities

Corollary: For n ≥ 1 we have
(
2n
n

)
=
∑n

k=0

(
n
k

)2
Fact: If 1 ≤ r ≤ n then

(
n+1
r+1

)
=
∑n

k=r

(
k
r

)
Why? Let S = {0, 1}n+1. For k = r, . . . , n define

I Ak = {b ∈ S having (r + 1) ones, with last one in positions k + 1}

I A = {b ∈ S with (r + 1) ones}

Note that

I A = Ar ∪A1 ∪ · · · ∪An

I Ai ∩Aj = ∅ if i 6= j



More Permutations and Combinations



Permutations of Indistinguishable Objects

Example: How many distinct rearrangements are there of the letters in the
word SUPRESS?

Fact: Suppose we are given n objects of k different types where

I there are nj objects of type j

I objects of the same type are indistinguishable

Then the number of distinct permutations of these objects is given by the
multinomial coefficient (

n

n1 · · ·nk

)
:=

n!

n1! · · ·nk!



The Multinomial Theorem

Theorem: If n ≥ 1 and x1, . . . , xm ∈ R then

(x1 + x2 + · · ·+ xm)n =
∑

n1+···nm=n

(
n

n1 · · ·nm

)
· xn1

1 · · · x
nm
m

Note: The Binomial Theorem is the special case where m = 2.



Objects in Boxes

General Question: How many ways are there to distribute n objects
into k boxes?

Four cases: Objects and boxes can be

I distinguishable (labeled)

I indistinguishable (unlabeled)



Case 1: Objects and Boxes are Distinguishable

Qu: How many ways are there to distribute n = n1 + · · ·nk distinguishable
objects into k distinct boxes so that box r has nr objects?

Ans: Multinomial coefficient (
n

n1 · · ·nk

)

Example: Given standard deck of 52 cards, how many ways are there to deal
hands of 5 cards to 3 different players?

Example: How many ways are there to place n distinct objects into k
distinguishable boxes?



Case 2: Objects Indistinguishable, Boxes Distinguishable

Qu: How many ways are there to place n indistinguishable objects into k
distinguishable boxes?

Ans: For 1 ≤ j ≤ k let nj = # objects in box j.

I There is a 1:1 correspondence between assignments of objects to boxes
and k-tuples (n1, . . . , nk) such that

nj ≥ 0 and
n∑

j=1

nj = n (∗)

I There is a 1:1 correspondence between k-tuples (n1, . . . , nk) satisfying
(∗) and the arrangement of k − 1 “bars” and n “stars”

(n1, . . . , nk)⇔ ∗ · · · ∗ | ∗ · · · ∗ | · · · | ∗ · · · ∗


