Introduction to Decision Sciences Lecture 10

Andrew Nobel

October 17, 2017

Mathematical Induction

Given: Propositional function P(n) with domain \mathbb{N}_+

```
Basis step: Show that P(1) is true
```

Inductive step: Show that $P(k) \rightarrow P(k+1)$ is true for every $k \ge 1$

- ▶ assume that *P*(*k*) is true "inductive hypothesis"
- establish that P(k+1) is true

Conclusion: P(n) is true for every $n \in \mathbb{N}_+$

We can view induction as a (new) rule of inference, namely,

$$[P(1) \land \forall k (P(k) \to P(k+1))] \to \forall n P(n)$$

Validity of Induction

Informal: Ladder/Dominos

- P(1) is true by Basis step
- ▶ $P(1) \rightarrow P(2)$ is true by Inductive step, so P(2) is true
- ▶ $P(2) \rightarrow P(3)$ is true by Inductive step, so P(3) is true
- ▶ $P(3) \rightarrow P(4)$ is true by Inductive step, so P(4) is true
- and so on...

Conclude: P(n) is true for every n

Validity of Induction

Formal: Suppose that basis and inductive steps hold but $\forall n P(n)$ is F

- Then $S = \{n : P(n) \text{ is } F\}$ is non-empty
- \blacktriangleright By well-ordering, S has smallest element m
- By Basis step, P(1) is true so $m \ge 2$
- Definition of S implies P(m-1) is T and we know $m-1 \ge 1$
- Inductive step then implies P(m) is T, a contradiction
- Conclude that $\forall n P(n)$ is T

Examples

Example 1: Sum of first n odd integers is n^2 . To show: $\forall n P(n)$, where

$$P(n)$$
 is $1 + 3 + \dots + (2n - 1) = n^2$

Example 2: Sum of first *n* perfect squares. To show $\forall n P(n)$, where

$$P(n)$$
 is $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$

Example 3: If $n \ge 1$ is odd then $8 | n^2 - 1$. To show: $\forall m \ge 0 P(m)$, where

P(m) is $8 | (2m+1)^2 - 1$

Fermat's Little Theorem

Theorem: If p is prime and $r \ge 0$ then $p | r^p - r$ (*)

Binomial Theorem: For all $a, b \in \mathbb{R}$ and $n \ge 0$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Harmonic Numbers

Definition: The *n*th harmonic number is the sum

$$H_m = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{m}$$

Fact: For each $n \ge 0, H_{2^n} \ge 1 + n/2$

Corollaries:

- H_n tends to infinity as n tends to infinity
- $H_n \ge 1 + \lfloor \log_2 n \rfloor / 2$ for each $n \ge 1$

Theorem: $H_n - \ln n \rightarrow \gamma = .577...$ (Euler's constant) as $n \rightarrow \infty$

An Inequality

Fact: If x_1, \ldots, x_n are numbers between 0 and 1 then

$$1 - \sum_{i=1}^{n} x_i \leq \prod_{i=1}^{n} (1 - x_i)$$

Corollary: Under the same conditions

$$1 - \sum_{i=1}^{n} x_i \leq \prod_{i=1}^{n} \sqrt{1 - x_i} \leq \prod_{i=1}^{n} \sqrt{1 - x_i^2}$$

Induction with a Stronger Inductive Hypothesis.

Given: Propositional function P(n) with domain $\{1, 2, ...\}$

Basis step: Show that P(1) is true

Inductive step: Show $P(1) \land \cdots \land P(k) \rightarrow P(k+1)$ is true for each $k \ge 1$

- Assume that $P(1) \land \cdots \land P(k)$ is true "strong inductive hypothesis"
- Establish that P(k+1) is true

Conclusion: P(n) is true for every $n \ge 1$

Can view strong induction as a (new) rule of inference. (Validity follows from well-ordering principle.)

$$[P(1) \land \forall k (P(1) \land \dots \land P(k) \to P(k+1))] \to \forall n P(n)$$

Ex. Prime Factorization

Thm: Every integer $n \ge 2$ can be written as a product of primes.

Proof: Strong induction. Propositional function: for $n \ge 2$

P(n) = n can be written as a product of primes

Basis: P(2) is true as 2 is prime.

Induction: Suppose that $P(2), P(3), \ldots, P(k)$ are true.

- Case 1: Suppose k + 1 is prime
- ► Case 2: Suppose k + 1 is composite

Ex. Piles of Stones

Given: Pile of $n \ge 2$ stones

- split pile into two piles of size $r, s \ge 1$ with r + s = n
- compute product rs of pile sizes
- continue splitting piles into smaller ones until every pile has one stone

Claim: No matter how piles split, sum of products rs over splits is n(n-1)/2

Proof: Strong induction. Propositional function: for $n \ge 2$

P(n) = starting with *n* stones, sum of products is n(n-1)/2

Basis: Consider P(2)

Induction: Suppose that $P(2), P(3), \ldots, P(k)$ are true

Basics of Counting

Product Rule

Product Rule: Suppose that the elements of a collection S can be specified by a sequence of k steps such that

- There are n_j possibilities at step j
- The selections made at steps 1,..., j do not affect the number of possibilities at step j + 1

Then S has $n_1 n_2 \cdots n_k$ elements

Example: Cartesian product of sets A_1, \ldots, A_k is

$$A_1 \times \cdots \times A_k = \{(a_1, \ldots, a_k) : a_1 \in A_1, \ldots, a_k \in A_k\}$$

By product rule $|A_1 \times \cdots \times A_k| = |A_1| \cdots |A_k|$

Example: Counting Functions

Given: Finite sets $A = \{a_1, ..., a_m\}$ and $B = \{b_1, ..., b_n\}$

- 1. What is the number of functions $f : A \rightarrow B$?
- 2. What is the number of one-to-one functions $f : A \rightarrow B$?
- 3. What is the number of onto functions $f : A \rightarrow B$?

Indicator Functions

Definition: The *indicator function* of a proposition q is given by

$$I(q) = \begin{cases} 1 & \text{if } q \text{ is true} \\ 0 & \text{if } q \text{ is false} \end{cases}$$

Example: Find the size of 2^S for a finite set $S = \{s_1, \ldots, s_n\}$

• Define function $f: 2^S \to \{0,1\}^n$ from 2^S to binary *n*-tuples by

$$f(A) = (I(s_1 \in A), I(s_2 \in A), \dots, I(s_n \in A))$$

• Can check that $f(\cdot)$ is one-to-one and onto, so

$$|2^{S}| = |\{0,1\}^{n}| = 2^{n} = 2^{|S|}$$

Sum Rule

Sum Rule: S'pose that each element of a collection S is one of k types, and

- There are n_j elements of type j
- No element can be of more than one type.

Then $|S| = n_1 + \cdots + n_k$

Equivalent Form: If $S = A_1 \cup \cdots \cup A_k$ where $A_i \cap A_j$ for $i \neq j$ then

$$|S| = |A_1| + \dots + |A_k|$$

Example: How many binary sequences b of length 6 begin with 01 or 001?

Inclusion-Exclusion

Fact: If A, B are sets then $|A \cup B| = |A| + |B| - |A \cap B|$.

General Form: For sets A_1, \ldots, A_n

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < \dots < i_{k} \le n} |A_{i_{1}} \cap \dots \cap A_{i_{k}}|$$

Example: How many sequences $b \in \{0, 1\}^8$ begin with 00 or end with 11?

Example: Suppose you have 5 friends who play golf, 8 who play tennis, and 3 who play both. How many of your friends play golf or tennis?

The Pigeonhole Principle

Fact: If k + 1 objects are placed in k boxes then one box must contain at least two objects.

Why? Let $n_j = \#$ objects in box j. If each $n_j \leq 1$ then

$$\sum_{j=1}^{k} n_j \leq \sum_{j=1}^{k} 1 = k < k+1.$$

Examples

- 1. Among 13 people, at least two have their birthday in the same month.
- 2. Among 11 people, at least two have the same last digit in their phone number.
- 3. If $f : A \rightarrow B$ is a function and |B| < |A| then f is not one-to-one

More Elaborate Applications of PHP

Fact: At a party with $n \ge 2$ guests there are at least two people with the same number of friends. (Assume *a* is friends with *b* iff *b* is friends with *a*.)

Why? For $1 \le j \le n$ let $m_j = \#$ friends of guest j at the party

- *Case 1:* Everybody knows somebody. Then each of m_1, \ldots, m_n is between 1 and n 1, so two of these numbers must be the same
- *Case 2:* Somebody has no friends. Then each of m_1, \ldots, m_n is between 0 and n 2, so two of these numbers must be the same

Triathlon Training (adapted from website of P. Talwalkar)

Know: Gary is training for a triathlon. Over a 30 day period he trains at least once every day, and 45 times in total.

Claim: There is a set of consecutive days when Gary trains exactly 14 times.

Why? For j = 1, ..., 30 let $s_j = \#$ workouts by end of day j. We know that

 $1 \le s_1 < s_2 < \dots < s_{29} < s_{30} = 45.$

Adding 14 to each term gives $15 \le s_1 + 14 < \cdots < s_{30} + 14 = 59$.

Upshot: The numbers $s_1, \ldots, s_{30}, s_1 + 14, \ldots, s_{30} + 14$ lie between 1 and 59

By PHP, two of these 60 numbers are the same, and as the numbers within each group are strictly increasing, there must be some i, j such that

$$s_i = s_j + 14 \iff s_i - s_j = 14$$

Another Application of PHP

Fact: For each $n \geq 1$ there is an $r \geq 1$ s.t. the decimal expansion of rn contains only 0s and 1s

Generalized Pigeon Hole Principle

Generalized PHP: If *N* objects are placed in *k* boxes, then there is a box containing at least $\lceil N/k \rceil$ objects

Example: Rolling a 6-sided die

- 1. How many rolls guarantee that we see some number at least 4 times?
- 2. How many rolls guarantee that we see 1 at least 2 times?

Example: Among a class of 60 people at least $\lceil 60/5 \rceil = 12$ will receive one of the letter grades A, B, C, D, F.