Introduction to Decision Sciences

Lecture 7

Andrew Nobel

September 28, 2017

Summations

Summation Notation

Given: Numerical sequence $a_{1}, a_{2}, a_{3}, \ldots \in \mathbb{R}$

Definition: For $1 \leq m \leq n$ the sum of a_{i} as i goes from m to n is

$$
\sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\cdots+a_{n-1}+a_{n}
$$

Terminology

- i is the index of summation
- m is the lower limit of summation
- n is the upper limit of summation

Note: Choice of index i is not critical: $\sum_{i=m}^{n} a_{i}=\sum_{r=m}^{n} a_{r}$

Infinite sums

Given: Numerical sequence $a_{1}, a_{2}, a_{3}, \ldots \in \mathbb{R}$

Definition: Infinite sum of a_{i} as i goes from 1 to infinity is defined as the limit of finite sums (if the limit exists). Formally

$$
\sum_{i=1}^{\infty} a_{i}:=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}
$$

Change of Index

Idea: Analogous to change of variables in integration.

Example: Let $f:\{1, \ldots, n\} \rightarrow \mathbb{R}$ be a sequence with sum $s=\sum_{k=1}^{n} f(k)$
Consider new index $j=k-1$. Note that

- $k=j+1$
- $k=0 \Leftrightarrow j=0$
- $k=n \Leftrightarrow j=n-1$

Thus we can write sum s equivalently as $s=\sum_{j=0}^{n-1} f(j+1)$

Some Sums

Fact: For $n \geq 1$ sum of first n positive numbers

$$
\sum_{k=1}^{n} k=1+2+\cdots+n=\frac{(n+1) n}{2}
$$

Harmonic series: The finite sum

$$
\sum_{k=1}^{n} \frac{1}{k}
$$

is approximately equal to $\log _{e} n$, and tends to infinity as n increases.

Geometric Series

Fact: If $x \neq 1$ then the nth term of the geometric series is

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Corollary: $1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1$

Corollary: If $|x|<1$ then

$$
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}
$$

Extension: If $|x|<1$ then

$$
\sum_{k=1}^{\infty} k x^{k-1}=\frac{1}{(1-x)^{2}}
$$

Double Sums

Given: Array of numbers $M=\left\{a_{i j}\right\}$ with

- m rows $i=1, \ldots, m$
- n columns $j=1, \ldots, n$
- $a_{i j}=$ entry in row i and column j

Definition: The double sum of $a_{i j}$ is the sum of the $m n$ entries of the array

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j}\right)=\sum_{i=1}^{m} \text { sum of entries in row } i
$$

Properties of Double Sums

Fact: Order of summation is not important

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}=\sum_{j=1}^{n} \sum_{i=1}^{m} a_{i j}
$$

Fact: Sum of products equals product of sums

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j}=\left(\sum_{i=1}^{m} a_{i}\right)\left(\sum_{j=1}^{n} b_{j}\right)
$$

Corollary: (Square of a sum) For every $a_{1}, \ldots, a_{m} \in \mathbb{R}$

$$
0 \leq\left(\sum_{i=1}^{m} a_{i}\right)^{2}=\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} a_{j}
$$

Elegant argument

Fact: Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be real numbers. Then

$$
\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{a_{i} a_{j}}{i+j} \geq 0
$$

Proof: Note that for every $0 \leq x \leq 1$ we have

$$
0 \leq\left(\sum_{i=1}^{m} a_{i} x^{i-1 / 2}\right)^{2}=\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} a_{j} x^{i+j-1}
$$

Integrate both sides of the last inequality. Use the fact that integration is linear and that

$$
\int_{0}^{1} x^{\alpha} d x=1 /(\alpha+1)
$$

Recursive Sequence

Recursive sequence of order $k \geq 1$ defined in two parts

- Specify k initial values a_{0}, \ldots, a_{k-1}
- Recursive relation: For $n \geq k$ express a_{n} in terms of k previous values a_{n-1}, \ldots, a_{n-k}, and possibly n

Note: Using the initial values and recursive relation, we can find every term a_{n} of the sequence.

Note: To find a closed form for a recursive series, work backwards using the definition.

Examples

Example 1: Recursive sequence $a_{0}=1$ and $a_{n}=a_{n-1}+3$
Claim: $\left\{a_{n}\right\}$ is linear series with closed form $a_{n}=1+3 n$ for $n \geq 0$

Example 2: Recursive sequence with $a_{0}=5$ and $a_{n}=2 \cdot a_{n-1}$
Claim: $\left\{a_{n}\right\}$ is geometric series with closed form $a_{n}=5 \cdot 2^{n}$ for $n \geq 0$

Example 3: Recursive sequence with $a_{0}=1$ and $a_{n}=n a_{n-1}$
Claim: $\left\{a_{n}\right\}$ is factorial series with closed form $a_{n}=n$! for $n \geq 0$

Examples, cont.

[Finding closed form may require fancier mathematical tools]

Example 4: Recursive sequence with $a_{0}=1, a_{1}=4$ and $a_{n}=a_{n-1}-2 a_{n-2}$

Example 5 (Fibonacci Series): Sequence $\left\{a_{n}: n \geq 0\right\}$ specified by

- $a_{0}=a_{1}=1$
- $a_{n}=a_{n-1}+a_{n-2}$

Closed form turns out to be

$$
a_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

Note that $(1 \pm \sqrt{5}) / 2$ are the roots of quadratic equation $r^{2}-r-1=0$.

Cardinality

Cardinality

Recall: If A is a finite set, then cardinality $|A|=$ number of elements in A

Fact: If A, B are finite, then $|A|=|B|$ iff there exists a bijection $f: A \rightarrow B$

Definition

- Two sets A and B (possibly infinite) have the same cardinality if there exists a bijection $f: A \rightarrow B$
- A set A is countable if it is finite or has the same cardinality as \mathbb{N}
- A set A is uncountable if it is not countable

Examples

Example: The integers \mathbb{Z} are countable

Example: The rationals \mathbb{Q} are countable

Example: The interval $[0,1)=\{x: 0 \leq x<1\}$ is uncountable

Example: The real numbers \mathbb{R} are uncountable

Divisibility

Factors and Multiples

Given: $a, b \in \mathbb{Z}$ with $a \neq 0$.

Definition: We say a divides b written $a \mid b$ if $b=a c$ for some $c \in \mathbb{Z}$.

- a is a factor of b
- b is a multiple of a

Fact: Let $a, b, c \in \mathbb{Z}$

- If $a \mid b$ and $a \mid c$ then $a \mid(b+c)$
- If $a \mid b$ and $b \mid c$ then $a \mid c$
- If $a \mid b$ then $a \mid b c$ for all $c \in \mathbb{Z}$

Cor: If $a \mid b$ and $a \mid c$ then $a \mid m b+n c$ for all $m, n \in \mathbb{Z}$

Division Algorithm

Fact: Let $d \geq 1$. If $a \in \mathbb{Z}$ then there exists a unique quotient $q \in \mathbb{Z}$ and remainder $0 \leq r<d$ such that

$$
\begin{equation*}
a=q d+r \tag{0.1}
\end{equation*}
$$

Proof: For each $k \in \mathbb{Z}$ define

$$
A_{k}=\{k d+r: 0 \leq r \leq d-1\}=\text { integers between } k d \text { and }(k+1) d-1
$$

Note that $\mathbb{Z}=\bigcup_{k \in \mathbb{Z}} A_{k}$ and $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$.

Definition: When (0.1) holds, write $r=a$ mod d. Terminology: r equals a modulo d, meaning that r is the remainder when a is divided by d.

