Introduction to Decision Sciences Lecture 7

Andrew Nobel

September 28, 2017

Summations

Summation Notation

Given: Numerical sequence $a_1, a_2, a_3, \ldots \in \mathbb{R}$

Definition: For $1 \le m \le n$ the sum of a_i as *i* goes from *m* to *n* is

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_{n-1} + a_n$$

Terminology

- i is the index of summation
- m is the lower limit of summation
- n is the upper limit of summation

Note: Choice of index *i* is not critical: $\sum_{i=m}^{n} a_i = \sum_{r=m}^{n} a_r$

Infinite sums

Given: Numerical sequence $a_1, a_2, a_3, \ldots \in \mathbb{R}$

Definition: Infinite sum of a_i as *i* goes from 1 to infinity is defined as the limit of finite sums (if the limit exists). Formally

$$\sum_{i=1}^{\infty} a_i := \lim_{n \to \infty} \sum_{i=1}^n a_i$$

Change of Index

Idea: Analogous to change of variables in integration.

Example: Let $f: \{1, \ldots, n\} \to \mathbb{R}$ be a sequence with sum $s = \sum_{k=1}^{n} f(k)$

Consider new index j = k - 1. Note that

- $\blacktriangleright \ k=j+1$
- $\blacktriangleright k = 0 \Leftrightarrow j = 0$
- $\blacktriangleright \ k = n \Leftrightarrow j = n 1$

Thus we can write sum s equivalently as $s = \sum_{j=0}^{n-1} f(j+1)$

Some Sums

Fact: For $n \ge 1$ sum of first *n* positive numbers

$$\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{(n+1)n}{2}$$

Harmonic series: The finite sum

$$\sum_{k=1}^{n} \frac{1}{k}$$

is approximately equal to $\log_e n$, and tends to infinity as n increases.

Geometric Series

Fact: If $x \neq 1$ then the *n*th term of the geometric series is

$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1}$$

Corollary:
$$1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1$$

Corollary: If |x| < 1 then

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

Extension: If |x| < 1 then

$$\sum_{k=1}^{\infty} k \, x^{k-1} = \frac{1}{(1-x)^2}$$

Double Sums

Given: Array of numbers $M = \{a_{ij}\}$ with

- $m \text{ rows } i = 1, \dots, m$
- ▶ $n \text{ columns } j = 1, \dots, n$
- $a_{ij} = \text{entry in row } i \text{ and column } j$

Definition: The double sum of a_{ij} is the sum of the mn entries of the array

$$\sum_{i=1}^m \sum_{j=1}^n a_{ij} = \sum_{i=1}^m (\sum_{j=1}^n a_{ij}) = \sum_{i=1}^m \text{ sum of entries in row } i$$

Properties of Double Sums

Fact: Order of summation is not important

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij}$$

Fact: Sum of products equals product of sums

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_i b_j = \left(\sum_{i=1}^{m} a_i\right) \left(\sum_{j=1}^{n} b_j\right)$$

Corollary: (Square of a sum) For every $a_1, \ldots, a_m \in \mathbb{R}$

$$0 \le \left(\sum_{i=1}^m a_i\right)^2 = \sum_{i=1}^m \sum_{j=1}^m a_i a_j$$

Elegant argument

Fact: Let a_1, \ldots, a_n and b_1, \ldots, b_n be real numbers. Then

$$\sum_{i=1}^m \sum_{j=1}^m \frac{a_i a_j}{i+j} \ge 0$$

Proof: Note that for every $0 \le x \le 1$ we have

$$0 \leq \left(\sum_{i=1}^{m} a_i x^{i-1/2}\right)^2 = \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j x^{i+j-1}$$

Integrate both sides of the last inequality. Use the fact that integration is linear and that

$$\int_0^1 x^\alpha \, dx = 1/(\alpha+1)$$

Recursive Sequence

Recursive sequence of order $k \ge 1$ defined in two parts

- Specify k initial values a_0, \ldots, a_{k-1}
- ▶ Recursive relation: For $n \ge k$ express a_n in terms of k previous values a_{n-1}, \ldots, a_{n-k} , and possibly n

Note: Using the initial values and recursive relation, we can find every term a_n of the sequence.

Note: To find a closed form for a recursive series, work backwards using the definition.

Examples

Example 1: Recursive sequence $a_0 = 1$ and $a_n = a_{n-1} + 3$

Claim: $\{a_n\}$ is linear series with closed form $a_n = 1 + 3n$ for $n \ge 0$

Example 2: Recursive sequence with $a_0 = 5$ and $a_n = 2 \cdot a_{n-1}$

Claim: $\{a_n\}$ is geometric series with closed form $a_n = 5 \cdot 2^n$ for $n \ge 0$

Example 3: Recursive sequence with $a_0 = 1$ and $a_n = na_{n-1}$

Claim: $\{a_n\}$ is factorial series with closed form $a_n = n!$ for $n \ge 0$

Examples, cont.

[Finding closed form may require fancier mathematical tools]

Example 4: Recursive sequence with $a_0 = 1$, $a_1 = 4$ and $a_n = a_{n-1} - 2a_{n-2}$

Example 5 (Fibonacci Series): Sequence $\{a_n : n \ge 0\}$ specified by

▶ $a_0 = a_1 = 1$

$$a_n = a_{n-1} + a_{n-2}$$

Closed form turns out to be

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n + \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$$

Note that $(1 \pm \sqrt{5})/2$ are the roots of quadratic equation $r^2 - r - 1 = 0$.

Cardinality

Cardinality

Recall: If A is a finite set, then cardinality |A| = number of elements in A

Fact: If A, B are finite, then |A| = |B| iff there exists a bijection $f : A \to B$

Definition

- ▶ Two sets A and B (possibly infinite) have the same cardinality if there exists a bijection $f : A \to B$
- A set A is countable if it is finite or has the same cardinality as \mathbb{N}
- A set *A* is uncountable if it is not countable

Examples

Example: The integers \mathbb{Z} are countable

Example: The rationals \mathbb{Q} are countable

Example: The interval $[0,1) = \{x : 0 \le x < 1\}$ is uncountable

Example: The real numbers \mathbb{R} are uncountable

Divisibility

Factors and Multiples

Given: $a, b \in \mathbb{Z}$ with $a \neq 0$.

Definition: We say *a* divides *b* written a|b if b = ac for some $c \in \mathbb{Z}$.

- a is a factor of b
- \blacktriangleright b is a multiple of a

Fact: Let $a, b, c \in \mathbb{Z}$

- If a|b and a|c then a|(b+c)
- If a|b and b|c then a|c
- If a|b then a|bc for all $c \in \mathbb{Z}$

Cor: If a|b and a|c then a|mb + nc for all $m, n \in \mathbb{Z}$

Division Algorithm

Fact: Let $d \ge 1$. If $a \in \mathbb{Z}$ then there exists a unique *quotient* $q \in \mathbb{Z}$ and *remainder* $0 \le r < d$ such that

$$a = q d + r \tag{0.1}$$

Proof: For each $k \in \mathbb{Z}$ define

 $A_k = \{k d + r : 0 \le r \le d - 1\} =$ integers between kd and (k+1)d - 1

Note that $\mathbb{Z} = \bigcup_{k \in \mathbb{Z}} A_k$ and $A_i \cap A_j = \emptyset$ if $i \neq j$.

Definition: When (0.1) holds, write $r = a \mod d$. Terminology: r equals $a \mod d$, meaning that r is the remainder when a is divided by d.