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Summations



Summation Notation

Given: Numerical sequence a1, a2, a3, . . . ∈ R

Definition: For 1 ≤ m ≤ n the sum of ai as i goes from m to n is

n∑
i=m

ai = am + am+1 + · · ·+ an−1 + an

Terminology

I i is the index of summation

I m is the lower limit of summation

I n is the upper limit of summation

Note: Choice of index i is not critical:
∑n
i=m ai =

∑n
r=m ar



Infinite sums

Given: Numerical sequence a1, a2, a3, . . . ∈ R

Definition: Infinite sum of ai as i goes from 1 to infinity is defined as the limit
of finite sums (if the limit exists). Formally

∞∑
i=1

ai := lim
n→∞

n∑
i=1

ai



Change of Index

Idea: Analogous to change of variables in integration.

Example: Let f : {1, . . . , n} → R be a sequence with sum s =
∑n
k=1 f(k)

Consider new index j = k − 1. Note that

I k = j + 1

I k = 0⇔ j = 0

I k = n⇔ j = n− 1

Thus we can write sum s equivalently as s =
∑n−1
j=0 f(j + 1)



Some Sums

Fact: For n ≥ 1 sum of first n positive numbers

n∑
k=1

k = 1 + 2 + · · ·+ n =
(n+ 1)n

2

Harmonic series: The finite sum

n∑
k=1

1

k

is approximately equal to loge n, and tends to infinity as n increases.



Geometric Series

Fact: If x 6= 1 then the nth term of the geometric series is

n∑
i=0

xi =
xn+1 − 1

x− 1

Corollary: 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

Corollary: If |x| < 1 then
∞∑
k=0

xk =
1

1− x

Extension: If |x| < 1 then

∞∑
k=1

k xk−1 =
1

(1− x)2



Double Sums

Given: Array of numbers M = {aij} with

I m rows i = 1, . . . ,m

I n columns j = 1, . . . , n

I aij = entry in row i and column j

Definition: The double sum of aij is the sum of the mn entries of the array

m∑
i=1

n∑
j=1

aij =
m∑
i=1

(
n∑
j=1

aij) =
m∑
i=1

sum of entries in row i



Properties of Double Sums

Fact: Order of summation is not important

m∑
i=1

n∑
j=1

aij =
n∑
j=1

m∑
i=1

aij

Fact: Sum of products equals product of sums

m∑
i=1

n∑
j=1

aibj =

(
m∑
i=1

ai

)(
n∑
j=1

bj

)

Corollary: (Square of a sum) For every a1, . . . , am ∈ R

0 ≤

(
m∑
i=1

ai

)2

=

m∑
i=1

m∑
j=1

ai aj



Elegant argument

Fact: Let a1, . . . , an and b1, . . . , bn be real numbers. Then

m∑
i=1

m∑
j=1

ai aj
i+ j

≥ 0

Proof: Note that for every 0 ≤ x ≤ 1 we have

0 ≤

(
m∑
i=1

ai x
i−1/2

)2

=
m∑
i=1

m∑
j=1

ai aj x
i+j−1

Integrate both sides of the last inequality. Use the fact that integration is
linear and that ∫ 1

0

xα dx = 1/(α+ 1)



Recursive Sequence

Recursive sequence of order k ≥ 1 defined in two parts

I Specify k initial values a0, . . . , ak−1

I Recursive relation: For n ≥ k express an in terms of k previous values
an−1, . . . , an−k, and possibly n

Note: Using the initial values and recursive relation, we can find every term
an of the sequence.

Note: To find a closed form for a recursive series, work backwards using the
definition.



Examples

Example 1: Recursive sequence a0 = 1 and an = an−1 + 3

Claim: {an} is linear series with closed form an = 1 + 3n for n ≥ 0

Example 2: Recursive sequence with a0 = 5 and an = 2 · an−1

Claim: {an} is geometric series with closed form an = 5 · 2n for n ≥ 0

Example 3: Recursive sequence with a0 = 1 and an = nan−1

Claim: {an} is factorial series with closed form an = n! for n ≥ 0



Examples, cont.

[Finding closed form may require fancier mathematical tools]

Example 4: Recursive sequence with a0 = 1, a1 = 4 and an = an−1 − 2an−2

Example 5 (Fibonacci Series): Sequence {an : n ≥ 0} specified by

I a0 = a1 = 1

I an = an−1 + an−2

Closed form turns out to be

an =
1√
5

[(
1 +
√
5

2

)n
+

(
1−
√
5

2

)n]
Note that (1±

√
5)/2 are the roots of quadratic equation r2 − r − 1 = 0.



Cardinality



Cardinality

Recall: If A is a finite set, then cardinality |A| = number of elements in A

Fact: If A,B are finite, then |A| = |B| iff there exists a bijection f : A→ B

Definition

I Two sets A and B (possibly infinite) have the same cardinality if there
exists a bijection f : A→ B

I A set A is countable if it is finite or has the same cardinality as N

I A set A is uncountable if it is not countable



Examples

Example: The integers Z are countable

Example: The rationals Q are countable

Example: The interval [0, 1) = {x : 0 ≤ x < 1} is uncountable

Example: The real numbers R are uncountable



Divisibility



Factors and Multiples

Given: a, b ∈ Z with a 6= 0.

Definition: We say a divides b written a|b if b = ac for some c ∈ Z.

I a is a factor of b

I b is a multiple of a

Fact: Let a, b, c ∈ Z

I If a|b and a|c then a|(b+ c)

I If a|b and b|c then a|c

I If a|b then a|bc for all c ∈ Z

Cor: If a|b and a|c then a|mb+ nc for all m,n ∈ Z



Division Algorithm

Fact: Let d ≥ 1. If a ∈ Z then there exists a unique quotient q ∈ Z and
remainder 0 ≤ r < d such that

a = q d+ r (0.1)

Proof: For each k ∈ Z define

Ak = {k d+ r : 0 ≤ r ≤ d− 1} = integers between kd and (k + 1)d− 1

Note that Z =
⋃
k∈ZAk and Ai ∩Aj = ∅ if i 6= j.

Definition: When (0.1) holds, write r = a mod d. Terminology: r equals a
modulo d, meaning that r is the remainder when a is divided by d.


