Introduction to Decision Sciences
 Lecture 6

Andrew Nobel

September 21, 2017

Functions

Functions

Given: Sets A and B, possibly different

Definition: A function $f: A \rightarrow B$ is a rule that assigns every element $a \in A$ to a unique element $f(a) \in B$.

- A called the domain of f
- B called the range of f

In general

- range A, domain B can be finite or infinite, and need not be numerical
- changing the range A or domain B changes the function

Some Common Real-Valued Functions

A. Defined for all real arguments

1. Constants $f(x)=1$
2. Linear (affine) functions $f(x)=a x+b$
3. Polynomials $f(x)=\sum_{k=0}^{d} a_{k} x^{k}$
4. Exponential function $f(x)=e^{a x}$
5. Sine function $f(x)=\sin (x)$ (also cosine, tangent)
6. Other $f(x)=e^{-x^{2} / 2}$
B. Defined for non-negative/positive arguments
7. Square root $f(x)=\sqrt{x}$ (also cube roots, fourth roots, and so on).
8. Logarithm $f(x)=\log x$ (usually base 10)
9. Other $f(x)=x \log x$

Image and Pre-Image

Definition: Let $f: A \rightarrow B$ be a function

- The image of $S \subseteq A$ under f is

$$
f(S)=\{f(s): s \in S\} \subseteq B \quad \text { (think pushforward) }
$$

- The pre-image of $T \subseteq B$ under f is

$$
f^{-1}(T)=\{a: f(a) \in T\} \subseteq A \quad \text { (think pullback) }
$$

Note: pre-image $f^{-1}(T)$

- is well defined even if f is not invertible in the usual sense
- answers the question "when is $f(a)$ in T ?"

One-to-One, Onto, Bijection

Definition: Let $f: A \rightarrow B$ be a function

- f is $1: 1$ (injective) if distinct points in A get mapped to distinct points in B

$$
\forall a_{1}, a_{2} \in A \quad\left[a_{1} \neq a_{2} \rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)\right]
$$

- f is onto (surjective) if every point in B is the image of some point in A

$$
\forall b \in B \quad \exists a \in A \quad f(a)=b
$$

- f is a bijection if it is $1: 1$ and onto

Inverse of a Function

Fact: If $f: A \rightarrow B$ is a bijection then for every $b \in B$ there is a unique $a \in A$ such that $f(a)=b$.

Definition: If $f: A \rightarrow B$ is a bijection, define the inverse $f^{-1}: B \rightarrow A$ by

$$
f^{-1}(b)=\text { unique } a \in A \text { s.t. } f(a)=b
$$

Fact

- For each $a \in A, f^{-1}(f(a))=a$
- For each $b \in B, f\left(f^{-1}(b)\right)=b$

Increasing and Decreasing Functions

Given: Function $f: A \rightarrow B$ with $A, B \subseteq \mathbb{R}$

Definition

- f is increasing if for all $x, y \in A, x \leq y$ implies $f(x) \leq f(y)$.
- f is strictly increasing if for all $x, y \in A, x<y$ implies $f(x)<f(y)$.
- f is decreasing if for all $x, y \in A, x \leq y$ implies $f(x) \geq f(y)$.
- f is strictly decreasing if for all $x, y \in A, x<y$ implies $f(x)>f(y)$.

Fact: If f is strictly increasing (or decreasing) then f is $1: 1$

Composition of Functions

Definition: The composition of two functions $g: A \rightarrow B$ and $f: B \rightarrow C$ is the function $f \circ g: A \rightarrow C$ defined by

$$
(f \circ g)(a)=f(g(a))
$$

Definition: The identity function $i_{A}: A \rightarrow A$ is defined by $i_{A}(a)=a$.

Definition: Given $f, g: A \rightarrow \mathbb{R}$ define

- $\operatorname{sum} f+g: A \rightarrow \mathbb{R}$ by $(f+g)(a)=f(a)+g(a)$
- product $f g: A \rightarrow \mathbb{R}$ by $(f g)(a)=f(a) g(a)$

Floor and Ceiling Functions

Definition: For $x \in \mathbb{R}$

- $\lfloor x\rfloor=$ largest integer less than or equal to x
- $\lceil x\rceil=$ smallest integer greater than or equal to x

Fact

- $x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1$
- $\lfloor-x\rfloor=-\lceil x\rceil,\lceil-x\rceil=-\lfloor x\rfloor$
- $\lfloor 2 x\rfloor=\lfloor x\rfloor+\lfloor x+1 / 2\rfloor$

Sequences

Sequences

Informal: A sequence is an ordered list (finite or infinite) of objects.

Formally: Given

- Index set $A \subseteq \mathbb{N}$, e.g., $A=\{0,1, \ldots, N\},\{1,2,3, \ldots\}$
- Set of objects S, e.g, numbers, names, sets, etc.

A sequence of objects in S indexed by A is a function $f: A \rightarrow S$

Notation/Terminology:

- For $n \in A$, let $s_{n}=f(n)$
- Denote a generic sequence by ($s_{n}: n \in A$)
- A numerical sequence often referred to as a series

Some Numerical Sequences

- Harmonic: Here $s_{n}=1 / n$ for $n \geq 1$

$$
1,1 / 2,1 / 3,1 / 4, \ldots
$$

- Geometric: Here $s_{n}=a r^{n}$ for $n \geq 0$ with $a, r \in \mathbb{R}$

$$
a, a r, a r^{2}, a r^{3}, \ldots
$$

- Arithmetic: Here $s_{n}=a+n d$ for $0 \leq n \leq N$ with $a, d \in \mathbb{R}$

$$
a, a+d, a+2 d, \ldots a+N d
$$

Here a is the initial term, d is the common difference, and $N+1$ is the length of the progression.

Extrapolation

Given: First few terms of sequence $\left\{s_{n}\right\}$

Goal: Find a generating rule compatible with these terms

Examples

- s_{0}, \ldots, s_{4} equal to $1,4,7,10,13$
- s_{0}, \ldots, s_{4} equal to $3,6,12,24,48$
- s_{1}, \ldots, s_{5} equal to $2,8,26,80,242$

Summations

Summation Notation

Given: Numerical sequence $a_{1}, a_{2}, a_{3}, \ldots \in \mathbb{R}$

Definition: For $1 \leq m \leq n$ the sum of a_{i} as i goes from m to n is

$$
\sum_{i=m}^{n} a_{i}=a_{m}+a_{m+1}+\cdots+a_{n-1}+a_{n}
$$

Terminology

- i is the index of summation
- m is the lower limit of summation
- n is the upper limit of summation

Note: Choice of index i is not critical: $\sum_{i=m}^{n} a_{i}=\sum_{r=m}^{n} a_{r}$

Infinite sums

Given: Numerical sequence $a_{1}, a_{2}, a_{3}, \ldots \in \mathbb{R}$

Definition: Infinite sum of a_{i} as i goes from 1 to infinity is defined as the limit of finite sums (if the limit exists). Formally

$$
\sum_{i=1}^{\infty} a_{i}:=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}
$$

Change of Index

Idea: Analogous to change of variables in integration.

Example: Let $f:\{1, \ldots, n\} \rightarrow \mathbb{R}$ be a sequence with sum $s=\sum_{k=1}^{n} f(k)$
Consider new index $j=k-1$. Note that

- $k=j+1$
- $k=0 \Leftrightarrow j=0$
- $k=n \Leftrightarrow j=n-1$

Thus we can write sum s equivalently as $s=\sum_{j=0}^{n-1} f(j+1)$

Some Sums

Fact: For $n \geq 1$ sum of first n positive numbers

$$
\sum_{k=1}^{n} k=1+2+\cdots+n=\frac{(n+1) n}{2}
$$

Harmonic series: The finite sum

$$
\sum_{k=1}^{n} \frac{1}{k}
$$

is approximately equal to $\log _{e} n$, and tends to infinity as n increases.

Geometric Series

Fact: If $x \neq 1$ then the nth term of the geometric series is

$$
\sum_{i=0}^{n} x^{i}=\frac{x^{n+1}-1}{x-1}
$$

Corollary: $1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1$

Corollary: If $|x|<1$ then

$$
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}
$$

Extension: If $|x|<1$ then

$$
\sum_{k=1}^{\infty} k x^{k-1}=\frac{1}{(1-x)^{2}}
$$

Double Sums

Given: Array of numbers $M=\left\{a_{i j}\right\}$ with

- m rows $i=1, \ldots, m$
- n columns $j=1, \ldots, n$
- $a_{i j}=$ entry in row i and column j

Definition: The double sum of $a_{i j}$ is the sum of the $m n$ entries of the array

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j}\right)=\sum_{i=1}^{m} \text { sum of entries in row } i
$$

Properties of Double Sums

Fact: Order of summation is not important

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}=\sum_{j=1}^{n} \sum_{i=1}^{m} a_{i j}
$$

Fact: Sum of products equals product of sums

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i} b_{j}=\left(\sum_{i=1}^{m} a_{i}\right)\left(\sum_{j=1}^{n} b_{j}\right)
$$

Corollary: Square of a sum

$$
0 \leq\left(\sum_{i=1}^{m} a_{i}\right)^{2}=\sum_{i=1}^{m} \sum_{j=1}^{m} a_{i} a_{j}
$$

