Introduction to Decision Sciences
 Lecture 5

Andrew Nobel

September 14, 2017

Maxima, Minima, Absolute Value

Maxima and Minima

Definition: The maximum of a and b is the larger of the two numbers

$$
\max (a, b)= \begin{cases}a & \text { if } a \geq b \\ b & \text { otherwise }\end{cases}
$$

Definition: The minimum of a and b is the smaller of the two numbers

$$
\min (a, b)= \begin{cases}a & \text { if } a \leq b \\ b & \text { otherwise }\end{cases}
$$

Maxima and Minima, basic properties

Fact: For any numbers a, b
(1) $a, b \leq \max (a, b)$
(2) $\min (a, b) \leq a, b$
(3) If $a, b \geq 0$ then $\max (a, b) \leq a+b$.
(4) $a+b=\max (a, b)+\min (a, b)$.

Maxima and Minima for Finite Sequences

Definition: The maximum of a numerical sequence $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ is the largest element of the sequence

$$
\max _{1 \leq i \leq n} a_{i}=a_{j} \text { such that } a_{j} \geq a_{i} \text { for } 1 \leq i \leq n
$$

Note: There is an analogous definition for the minimum of $a_{1}, a_{2}, \ldots, a_{n}$. Can you write this down?

Fact: If a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} are numerical sequences then

$$
\max _{1 \leq i \leq n}\left(a_{i}+b_{i}\right) \leq \max _{1 \leq j \leq n} a_{j}+\max _{1 \leq k \leq n} a_{k}
$$

Absolute Value and Basic Properties

Definition: The absolute value of $x \in \mathbb{R}$ is defined by

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Fact: For each $x \in \mathbb{R}$
(1) $|x| \geq 0$
(2) $|x|=\max (x,-x)$
(2) $|x|^{2}=x^{2}$
(3) $|x|=\sqrt{x^{2}}$

Absolute Values of Products and Sums

Fact: For $x, y \in \mathbb{R}$, we have $|x y|=|x||y|$

Triangle inequality: For $x, y \in \mathbb{R}$, we have $|x+y| \leq|x|+|y|$

Interpretation: The distance between numbers x, y is usually measured by $|x-y|$. The triangle inequality implies that for every number z

$$
|x-y| \leq|x-z|+|z-y|
$$

Why is this inequality true? What does it say about distances?

Fun with Squares

Fact: For every $a, b \in \mathbb{R}, 2 a b \leq a^{2}+b^{2}$

Corollary: For every $a, b \in \mathbb{R},(a+b)^{2} \leq 2 a^{2}+2 b^{2}$

Corollary: For every $x, b \in \mathbb{R}, \sqrt{a b} \leq(a+b) / 2$.

Sets

Sets

Definition: A set is an unordered collection of distinct objects. Members of a set are called elements.

- Sets denoted by A, B, C, U, V
- Elements denoted by x, y, u, v
- Membership: $x \in A$ means x is an element of A

Specifying sets

- Finite or infinite list: $A=\{$ Bob, Nancy, Elaine $\}$ or $U=\{1,2,3, \ldots\}$
- Description: $V=\{x: x$ is a prime number less than 100$\}$

Note: Read $\{x: \ldots\}$ as "the set of all x such that \ldots holds.

Cardinality

Definition

- A set A is finite if it has finitely many elements. Otherwise A is infinite.
- The cardinality of a finite set A, denoted by $|A|$, is the number of elements in A.

Definition: The empty set \emptyset is the set with no elements. Note that \emptyset is finite, with $|\emptyset|=0$. We can write $\emptyset=\{ \}$.

Important: Elements of sets can be sets. For example

$$
\}=\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}
$$

Equality, Containment, Power Sets

Definition Let A and B be sets

- $A=B$ if A and B have the same elements
- $A \subseteq B$ if every element of A is an element of B

Note: $A=B$ equivalent to $A \subseteq B$ and $B \subseteq A$

Logic

- $A=B$ equivalent to $\forall x(x \in A \leftrightarrow x \in B)$
- $A \subseteq B$ equivalent to $\forall x(x \in A \rightarrow x \in B)$

Definition The power set of a set A, denoted $P(A)$ or 2^{A}, is the set of all subsets of A. If A finite then $\left|2^{A}\right|=2^{|A|}$.

Ordered Pairs and Cartesian Products

Notation: (a, b) denotes the ordered pair with a in the first position and b in the second position. Note that ordered pair (a, b) is different from set $\{a, b\}$.

Definition: The Cartesian product of two sets A and B is

$$
A \times B=\{(a, b): a \in A, b \in B\}
$$

No restrictions: every $a \in A$ is paired with every $b \in B$

Fact: If A and B are finite then $|A \times B|=|A| \cdot|B|$

Higher Order Products: Cartesian product of sets A_{1}, \ldots, A_{n} is

$$
A_{1} \times \cdots \times A_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in A_{i}\right\}
$$

Set Operations

Set Operations

Given: Universal set U, subsets $A, B \subseteq U$.

Basic Operations

- $\bar{A}=\{x: x \notin A\}$ complement of A
- $A \cup B=\{x: x \in A \vee x \in B\}$ union of A and B
- $A \cap B=\{x: x \in A \wedge x \in B\}$ intersection of A and B

Definition: Sets A and B are disjoint if $A \cap B=\emptyset$

Other Operations

- $A \backslash B=A \cap B^{c}=\{x: x \in A \wedge x \notin B\}$ set difference
- $A \triangle B=(A \backslash B) \cup(B \backslash A)$ symmetric difference

Basic Facts

Fact: Given subsets A, B of a universal set U

- $A \cap B \subseteq A, B \subseteq A \cup B$
- $A \cap \bar{A}=\emptyset, \quad A \cup \bar{A}=U$
- $\bar{A}=U \backslash A$
- $\overline{\bar{A}}=A$

Inclusion Exclusion: Given finite sets $A, B \subseteq U$

- If $A \cap B=\emptyset$ then $|A \cup B|=|A|+|B|$
- In general, $|A \cup B|=|A|+|B|-|A \cap B|$, so $|A \cup B| \leq|A|+|B|$

Identities for Set Operations

Given: $A, B, C \subseteq U$

Distributive Laws

(1) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(2) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

De Morgan's Laws

(3) $\overline{A \cup B}=\bar{A} \cap \bar{B}$
(4) $\overline{A \cap B}=\bar{A} \cup \bar{B}$

Note: Set identities parallel logical equivalences with correspondences

$$
\text { complement } \Leftrightarrow \neg \quad \cap \Leftrightarrow \wedge \quad \cup \Leftrightarrow \vee
$$

To prove set identities: treat assertion $x \in A$ as a logical proposition, then apply rules of logic.

Multiple Unions and Intersections

Definition: Given subsets $A_{1}, A_{2}, A_{3}, \ldots$ of a universal set U

- The union of $A_{1}, A_{2}, A_{3}, \ldots$ is

$$
\bigcup_{i=1}^{\infty} A_{i}=\left\{x: \exists i \geq 1 \text { such that } x \in A_{i}\right\}
$$

- The intersection of $A_{1}, A_{2}, A_{3}, \ldots$ is

$$
\bigcap_{i=1}^{\infty} A_{i}=\left\{x: \forall i \geq 1 \text { such that } x \in A_{i}\right\}
$$

Functions

Functions

Given: Sets A and B, possibly different

Definition: A function $f: A \rightarrow B$ is a rule that assigns every element $a \in A$ to a unique element $f(a) \in B$.

- A called the domain of f
- B called the range of f

In general

- range A, domain B can be finite or infinite, and need not be numerical
- changing the range A or domain B changes the function

Some Common Real-Valued Functions

A. Defined for all real arguments

1. Constants $f(x)=1$
2. Linear (affine) functions $f(x)=a x+b$
3. Polynomials $f(x)=\sum_{k=0}^{d} a_{k} x^{k}$
4. Exponential function $f(x)=e^{a x}$
5. Sine function $f(x)=\sin (x)$ (also cosine, tangent)
6. Other $f(x)=e^{-x^{2} / 2}$
B. Defined for non-negative/positive arguments
7. Square root $f(x)=\sqrt{x}$ (also cube roots, fourth roots, and so on).
8. Logarithm $f(x)=\log x$ (usually base 10)
9. Other $f(x)=x \log x$,

Image and Pre-Image

Definition: Let $f: A \rightarrow B$ be a function

- The image of $S \subseteq A$ under f is

$$
f(S)=\{f(s): s \in S\} \subseteq B \quad \text { (think pushforward) }
$$

- The pre-image of $T \subseteq B$ under f is

$$
f^{-1}(T)=\{a: f(a) \in T\} \subseteq A \quad \text { (think pullback) }
$$

Note: pre-image $f^{-1}(T)$

- is well defined even if f is not invertible in the usual sense
- answers the question "when is $f(a)$ in T ?"

One-to-One, Onto, Bijection

Definition: Let $f: A \rightarrow B$ be a function

- f is $1: 1$ (injective) if distinct points in A get mapped to distinct points in B

$$
\forall a_{1}, a_{2} \in A \quad\left[a_{1} \neq a_{2} \rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)\right]
$$

- f is onto (surjective) if every point in B is the image of some point in A

$$
\forall b \in B \quad \exists a \in A \quad f(a)=b
$$

- f is a bijection if it is $1: 1$ and onto

Inverse of a Function

Fact: If $f: A \rightarrow B$ is a bijection then for every $b \in B$ there is a unique $a \in A$ such that $f(a)=b$.

Definition: If $f: A \rightarrow B$ is a bijection, define the inverse $f^{-1}: B \rightarrow A$ by

$$
f^{-1}(b)=\text { unique } a \in A \text { s.t. } f(a)=b
$$

Fact

- For each $a \in A, f^{-1}(f(a))=a$
- For each $b \in B, f\left(f^{-1}(b)\right)=b$

Increasing and Decreasing Functions

Given: Function $f: A \rightarrow B$ with $A, B \subseteq \mathbb{R}$

Definition

- f is increasing if for all $x, y \in A, x \leq y$ implies $f(x) \leq f(y)$.
- f is strictly increasing if for all $x, y \in A, x<y$ implies $f(x)<f(y)$.
- f is decreasing if for all $x, y \in A, x \leq y$ implies $f(x) \geq f(y)$.
- f is strictly decreasing if for all $x, y \in A, x<y$ implies $f(x)>f(y)$.

Fact: If f is strictly increasing (or decreasing) then f is $1: 1$

Composition of Functions

Definition: The composition of two functions $g: A \rightarrow B$ and $f: B \rightarrow C$ is the function $f \circ g: A \rightarrow C$ defined by

$$
(f \circ g)(a)=f(g(a))
$$

Definition: The identity function $i_{A}: A \rightarrow A$ is defined by $i_{A}(a)=a$.

Definition: Given $f, g: A \rightarrow \mathbb{R}$ define

- $\operatorname{sum} f+g: A \rightarrow \mathbb{R}$ by $(f+g)(a)=f(a)+g(a)$
- product $f g: A \rightarrow \mathbb{R}$ by $(f g)(a)=f(a) g(a)$

Floor and Ceiling Functions

Definition: For $x \in \mathbb{R}$

- $\lfloor x\rfloor=$ largest integer less than or equal to x
- $\lceil x\rceil=$ smallest integer greater than or equal to x

Fact

- $x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1$
- $\lfloor-x\rfloor=-\lceil x\rceil,\lceil-x\rceil=-\lfloor x\rfloor$
- $\lfloor 2 x\rfloor=\lfloor x\rfloor+\lfloor x+1 / 2\rfloor$

