Introduction to Decision Sciences
 Lecture 4

Andrew Nobel

September 5, 2017

Introduction to Proofs

Theorems and Proofs

Definition: A theorem is a true mathematical statement. The argument establishing the truth of a theorem is called a proof. Standard forms:
A. Proposition p (Ex: $\sqrt{2}$ is irrational.)

- Direct: establish truth of p in a direct manner
- Contradiction: assume $\neg p$ and derive a contradiction
B. Implication $p \rightarrow q$ ($\mathrm{Ex}:$ If m, n are odd, so is $m n$.)
- Direct: assume p and then show q
- Contraposition: assume $\neg q$ and then show $\neg p$
C. Biconditional $p \leftrightarrow q$ ($\mathrm{Ex}: n^{2}$ is even if and only if n is even.)
- Direct: establish chain of equivalences between p and q
- First show $p \rightarrow q$ then show $q \rightarrow p$

Terminology Used in Mathematical Practice

- A Theorem is major or important result
- A Proposition is minor, less important result
- A Lemma is a supporting result used in the proof of a theorem or proposition
- A Corollary is an immediate or easy consequence of a theorem or proposition

Odd, Even, and Rational Numbers

Notation:

- Positive Integers $\mathbb{N}_{+}=\{1,2, \ldots\}$
- Natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$
- Integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Rational numbers $\mathbb{Q}=\{a / b: a, b \in \mathbb{Z}$ and $b \neq 0\}$
- Real numbers $\mathbb{R}=(-\infty, \infty)$

Definition

- An integer n is even if $n=2 k$ for some $k \in \mathbb{Z}$
- An integer n is odd if $n=2 k+1$ for some $k \in \mathbb{Z}$

Products of Odd and Even numbers

Fact: The product of two odd integers is odd.

- Approach: direct argument from definition

Corollary: If n is odd then n^{2} is odd.

- Special case of previous fact

Fact: If n^{2} is even then n is even.

- Approach: Contraposition

An Equivalence Theorem

Fact: If n is an integer then the following statements are equivalent
(1) n is even
(2) $n+1$ is odd
(3) n^{2} is even

Goal: We wish to establish the truth of all propositions

$$
(i) \rightarrow(j) \text { where } i, j \text { can be } 1,2 \text {, or } 3 \text {. }
$$

Approach

- show that $(1) \leftrightarrow(2)$
- show that $(1) \leftrightarrow(3)$
- establish (2) $\leftrightarrow(3)$ using tautology $(p \rightarrow q) \wedge(q \rightarrow r) \rightarrow(p \rightarrow r) \equiv T$.

Proof by Contradiction

Goal: Establish proposition p

Idea: Assume p is false and derive a contradiction

Formally

- Establish truth of $\neg p \rightarrow F$
- Conclude $\neg p$ is false, so p is true.

Fact: The square root of 2 is irrational.

Proof Methods and Strategy

Exhaustive proofs, proofs by cases

A. Exhaustive proof: Sufficient to consider and check a small number of examples.

Fact: There is no solution in integers of the equation $x^{2}+2 y^{4}=8$.
B. Proof by cases: To establish $p \rightarrow q$ express $p=p_{1} \vee \cdots \vee p_{k}$ as a disjunction of cases p_{j} and then establish $p_{j} \rightarrow q$ for $j=1, \ldots, k$.

Fact: The last digit of a perfect square is $0,1,4,5,6$, or 9

Existence Proof

Goal: Establish proposition of the form $\exists x P(x)$.

- Constructive: Exhibit x such that $P(x)$ is true.
- Non-constructive: Establish truth of $\exists x P(x)$ without exhibiting a specific x for which $P(x)$ is true.

Fact: There is an irrational number x such that x^{x} is rational.

Fact: If the average \bar{a} of n numbers a_{1}, \ldots, a_{n} is greater than α, then at least one of the numbers is greater than α.

Inequalities

Preliminaries

Recall: Real number $\mathbb{R}=(-\infty, \infty)$, also called the real line.

Standard terminology: A real number x is

- positive if $x>0$
- non-negative if $x \geq 0$
- negative if $x<0$

Signs of Sums

Basic Properties 1: The sum of

- two positive numbers is positive
- two non-negative numbers is non-negative
- two negative numbers is negative

Signs of Products

Basic Properties 2: The product of

- two positive numbers is positive
- two non-negative numbers is non-negative
- two negative numbers is positive
- a positive number and a negative numbers is negative
- any number with zero is zero

Fact: For every number a we have $a^{2} \geq 0$, and if $a \neq 0$ then $a^{2}>0$.

Inequalities

Basic Definition: For numbers $a, b \in \mathbb{R}$
(1) $a \leq b$ if $b-a \geq 0 \quad$ (can also write $b \geq a)$
(2) $a<b$ if $b-a>0 \quad($ can also write $b>a)$

Transitivity: If $a \leq b$ and $b \leq c$ then $a \leq c$.

Inequalities for Sums

Fact:

- If $a \leq b$ and $c \leq d$ then $a+c \leq b+d$.
- If $a<b$ and $c \leq d$ then $a+c<b+d$.

Corollary:

- If $a \leq b$ then $a+c \leq b+c$ for every c
- If $a<b$ then $a+c<b+c$ for every c

Corollary:

- If $a \leq 0$ then $a+c \leq c$ for every c
- If $0 \leq b$ then $c \leq b+c$ for every c

Inequalities for Products

Fact: If $a \leq b$ and $c \leq d$ then $a c \leq b d$.

Fact: Suppose that $a \leq b$.

- If $\alpha \geq 0$ then $\alpha a \leq \alpha b$
- If $\alpha \leq 0$ then $\alpha b \leq \alpha a$

Example: If $a \leq b$ then $-b \leq-a$.

Maxima, Minima, Absolute Values

Maxima and Minima

Definition: The maximum of a and b is the larger of the two numbers

$$
\max (a, b)= \begin{cases}a & \text { if } a \geq b \\ b & \text { otherwise }\end{cases}
$$

Definition: The minimum of a and b is the smaller of the two numbers

$$
\min (a, b)= \begin{cases}a & \text { if } a \leq b \\ b & \text { otherwise }\end{cases}
$$

Note: Both definitions extend to finite lists of numbers $a_{1}, a_{2}, \ldots, a_{n}$.

Maxima and Minima, basic properties

Fact: For any numbers a, b
(1) $a, b \leq \max (a, b)$
(2) $\min (a, b) \leq a, b$
(3) If $a, b \geq 0$ then $\max (a, b) \leq a+b$.
(4) $a+b=\max (a, b)+\min (a, b)$.

Absolute Value and Basic Properties

Definition: The absolute value of $x \in \mathbb{R}$ is defined by

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

Fact: For each $x \in \mathbb{R}$
(1) $|x| \geq 0$
(2) $|x|=\max (x,-x)$
(3) $|x|=\sqrt{x^{2}}$

Corollary: For each $x \in \mathbb{R}$
(1) $x,-x \leq|x|$
(2) $|x|^{2}=x^{2}$

Absolute Values of Products and Sums

Fact: For $x, y \in \mathbb{R}$, we have $|x y|=|x||y|$

Triangle inequality: For $x, y \in \mathbb{R}$, we have $|x+y| \leq|x|+|y|$

Interpretation: The distance between numbers x, y is usually measured by $|x-y|$. The triangle inequality implies that for every number z

$$
|x-y| \leq|x-z|+|z-y|
$$

Why is this inequality true? What does it say about distances?

