Statistics 215 Homework 3

1. Find the following
a. $\max (34,-256)$
b. $\min (-34,-256)$
c. $\max (-128,-2)$
d. $\max (0, \min (-20,-5))$
e. $\min (3, \max (-2,-5))$
2. Show that $\min (a, b) \leq a, b$.
3. Show that $\min (a, b)+\max (a, b)=a+b$.
4. Show that $|x|=\max (x,-x)$.
5. The triangle inequality states that $|x+y| \leq|x|+|y|$.
a. Establish the triangle inequality by considering cases involving the signs of x and y.
b. Show that the triangle inequality implies $|x-y| \leq|x-z|+|z-y|$.
c. The quantity $|x-y|$ measures the distance between x and y. What does the inequality in part (b) say about distances between points?
6. Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be real numbers. Consider the following argument concerning the maximum of $\left(a_{i}+b_{i}\right)$. By definition,

$$
\max _{1 \leq i \leq n}\left(a_{i}+b_{i}\right)=a_{r}+b_{r}
$$

for some r in the set $\{1, \ldots, n\}$. Moreover, for this r,

$$
a_{r} \leq \max _{1 \leq j \leq n} a_{j} \text { and } b_{r} \leq \max _{1 \leq k \leq n} b_{k} .
$$

Putting these inequalities together using the rule $a \leq b \rightarrow a+c \leq b+c$ we obtain the inequality

$$
\max _{1 \leq i \leq n}\left(a_{i}+b_{i}\right)=a_{r}+b_{r} \leq \max _{1 \leq j \leq n} a_{j}+\max _{1 \leq k \leq n} b_{k} .
$$

Use a similar argument to find an inequality relating the minima

$$
\min _{1 \leq i \leq n}\left(a_{i}+b_{i}\right) \text { and } \min _{1 \leq j \leq n} a_{j}+\min _{1 \leq k \leq n} b_{k} .
$$

7. Show that if $a_{1} \leq a_{2}$ and $b_{1} \leq b_{2}$ then $\max \left(a_{1}, b_{1}\right) \leq \max \left(a_{2}, b_{2}\right)$. Hint: you may wish to consider the cases $\max \left(a_{1}, b_{1}\right)=a_{1}$ and $\max \left(a_{1}, b_{1}\right)=b_{1}$.
8. Use logical arguments (e.g., logical identities, equivalences) to establish the following set identities
(a) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(b) $\overline{A \cup B}=\bar{A} \cap \bar{B}$
(c) $\overline{A \cap B}=\bar{A} \cup \bar{B}$
