Statistics 215 Homework 3

- 1. Find the following
 - a. $\max(34, -256)$
 - b. $\min(-34, -256)$
 - c. $\max(-128, -2)$
 - d. $\max(0, \min(-20, -5))$
 - e. $\min(3, \max(-2, -5))$
- 2. Show that $\min(a, b) \le a, b$.
- 3. Show that $\min(a, b) + \max(a, b) = a + b$.
- 4. Show that $|x| = \max(x, -x)$.
- 5. The triangle inequality states that $|x + y| \le |x| + |y|$.
 - a. Establish the triangle inequality by considering cases involving the signs of x and y.
 - b. Show that the triangle inequality implies $|x y| \le |x z| + |z y|$.
 - c. The quantity |x-y| measures the distance between x and y. What does the inequality in part (b) say about distances between points?

6. Let a_1, \ldots, a_n and b_1, \ldots, b_n be real numbers. Consider the following argument concerning the maximum of $(a_i + b_i)$. By definition,

$$\max_{1 \le i \le n} (a_i + b_i) = a_r + b_r$$

for some r in the set $\{1, \ldots, n\}$. Moreover, for this r,

$$a_r \le \max_{1 \le j \le n} a_j$$
 and $b_r \le \max_{1 \le k \le n} b_k$.

Putting these inequalities together using the rule $a \leq b \rightarrow a + c \leq b + c$ we obtain the inequality

$$\max_{1 \le i \le n} (a_i + b_i) = a_r + b_r \le \max_{1 \le j \le n} a_j + \max_{1 \le k \le n} b_k.$$

Use a similar argument to find an inequality relating the minima

$$\min_{1 \le i \le n} (a_i + b_i) \text{ and } \min_{1 \le j \le n} a_j + \min_{1 \le k \le n} b_k.$$

7. Show that if $a_1 \leq a_2$ and $b_1 \leq b_2$ then $\max(a_1, b_1) \leq \max(a_2, b_2)$. Hint: you may wish to consider the cases $\max(a_1, b_1) = a_1$ and $\max(a_1, b_1) = b_1$.

8. Use logical arguments (e.g., logical identities, equivalences) to establish the following set identities

- (a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- (b) $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- (c) $\overline{A \cap B} = \overline{A} \cup \overline{B}$