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Predicates and Quantifiers



Predicates

Definition: A domain U is a set of objects x of interest.

Definition: A predicate P for U is a property of the objects x ∈ U such that
every x ∈ U has P , or does not have P , but not both.

Think: Predicate P ⇔ set of x ∈ U having property P

Propositional function: If P is a predicate and x is in U then

P (x) = proposition “object x has property P ”

Thus P (x) is T if x has property P , and P (x) is F otherwise.



Examples of Predicates

Example: Domain U = all undergraduates at UNC

I Predicate P is the property of being a Senior

I Predicate Q is property of being enrolled in STOR 215

I P (Bob) = “Bob is a Senior at UNC”

I Q(Kelly) = “Kelly is enrolled in STOR 215”



Examples of Predicates

Example: Even numbers

I Set U = positive integers {1, 2, 3, . . .}

I Predicate P is the property of being even

I P (x) = “x is even”

Example: Perfect squares

I Set U = positive integers {1, 2, 3, . . .}

I Predicate Q is the property of being a perfect square

I Q(x) = “x is a perfect square”



More Exotic Example

Example: Pythagorean triples

I Set U = all triples (x, y, z) of positive integers

I Predicate P is the property of being a Pythagorean triple

I P (x) is the statement x2 + y2 = z2



Quantifiers

Two flavors

I Universal: ∀ means “for all”

I Existential: ∃ means “there exists”

Definition: Let P be a predicate on a domain U

I ∀xP (x) is a proposition that is T if and only if P (x) is T for each x in U

I ∃xP (x) is a proposition that is T if and only if P (x) is T for some x in U

In other words

I ∀xP (x) is true if every element of U has property P

I ∃xP (x) is true if some element of U has property P



Quantifiers, cont.

Note: If domain U = {x1, . . . , xn} is finite, then

I ∀xP (x) ≡ P (x1) ∧ P (x2) ∧ · · · ∧ P (xn)

I ∃xP (x) ≡ P (x1) ∨ P (x2) ∨ · · · ∨ P (xn)

Note: Truth of ∀xP (x) and ∃xP (x) depends on domain U

I Domains: U = positive integers, V = {2, 4, 6, 8}

I Predicates: P = even, Q = perfect square



Expressions with Quantifiers

Note: Quantifiers ∃, ∀ have higher precedence than other logical operations

Definitions: In an expression with quantifiers

I A variable x is bound if it is the subject of a quantifier, and free otherwise

I If all variables in an expression are bound, it is a proposition. Otherwise,
it is a new predicate.

I The scope of a quantifier is the set of predicates to which it applies.

Example

I ∀x (P (x) ∨Q(x))

I ∀xP (x) ∨Q(y)



Logical Equivalence

Definition: Two propositions with quantifiers are logically equivalent if they
have the same truth value, whatever the choice of predicates and domains.

Example

I ∀x∀y R(x, y) ≡ ∀y ∀xR(x, y) (and similarly for ∃)

I ∀x (P (x) ∧Q(x)) ≡ ∀xP (x) ∧ ∀x Q(x)

I ¬∃xP (x) ≡ ∀x¬P (x) (De Morgan)

I ¬∀xP (x) ≡ ∃x¬P (x) (De Morgan)

But note...

I ∀x (P (x) ∨Q(x)) 6≡ ∀xP (x) ∨ ∀x Q(x)

I ∃x∀y R(x, y) 6≡ ∀y ∃xR(x, y)



Translation with Operations and Quantifiers

General rules: Domain U with elements x

I ∀ = for all, all, every x ∈ U

I ∃ = there exists, there is, some, at least one x ∈ U

I ∧ = and, ∨ = or, ¬ = not

I p→ q = if p then q, or p is sufficient for q, or q is necessary for p



Translation Example

Domain U = all students at UNC. Consider the following predicates

C = taking STOR 215

E = speaks English, F = speaks French, G = speaks Greek

I All students at UNC speak English

I Some UNC students are taking 215

I Every 215 student speaks French

I Some 215 student speaks Greek

I No 215 student speaks Greek

I Some 215 student speaks French and Greek

I Every 215 student who speaks French also speaks Greek

I Some 215 student does not speak French



Nested Quantifiers



Expressions with Nested Quantifiers

Given: Predicates P (x, y) and R(x, y, z)

Examples

I ∀x∃y P (x, y)

I ∃x∀y (P (x, y) ∨ ∃z R(x, y, z))

Note: these expressions are propositions (they have no free variables), so
they are either T or F



Two Examples

A. Let U = (−∞,∞) and Q(x, y) : y2 ≥ 2x+ 1

I ∀x∃y Q(x, y)

I ∃x∀y Q(x, y)

I ∃y ∀xQ(x, y)

I ∀x∀y Q(x, y)

B. Let U = all students at UNC and K(x, y) = x knows y

I ∃y ∀xK(x, y)

I ∀x∃y K(x, y)

I ∀x∀y (K(x, y)→ K(y, x))



Negation of Expressions with Nested Quantifiers

Arises in many mathematical arguments, e.g., proofs by contradiction and
proofs by contraposition.

Idea: Successively apply De Morgan’s laws for (i) quantifiers and (ii)
compound propositions.

Example: Negation of ∀x ∃y Q(x, y)

Example: Negation of ∃x ∀y (Q(x, y) ∨ ∃z R(x, y, z))



Translation with Nested Quantifiers

Example

I The product of two positive numbers is positive.

I Negation of this proposition.

Example

I Every positive number is the square of some non-zero number.

I Negation of this proposition.

Example

I Every positive number is the square of a unique positive number.

I Negation of this proposition.



Introduction to Proofs



Theorems and Proofs

Definition: A theorem is a true mathematical statement. The argument
establishing the truth of a theorem is called a proof. Standard forms:

A. Proposition p (Ex:
√
2 is irrational.)

I Direct: directly establish truth of p

I Contradiction: assume ¬p and derive a contradiction.

B. Implication p→ q (Ex: If m,n are even, so is mn.)

I Direct: assume p and then show q

I Contraposition: assume ¬q and then show ¬p

C. Biconditional p↔ q (Ex: n2 is even if and only if n is even.)

I Direct: establish chain of equivalences between p and q

I First show p→ q then show q → p



Terminology Used in Mathematical Practice

I A Theorem is major or important result

I A Proposition is minor, less important result

I A Lemma is a supporting result, used in the proof of a theorem or
proposition

I A Corollary is an immediate or easy consequence of a theorem or
proposition



Odd, Even, and Rational Numbers

Notation:

I Positive Integers N+ = {1, 2, . . .}

I Natural numbers N = {0, 1, 2, . . .}

I Integers Z = {. . . ,−2, −1, 0, 1, 2, . . .}

I Rational numbers Q = {a/b : a, b ∈ Z and b 6= 0}

I Real numbers R = (−∞,∞)

Definition

I An integer n is even if n = 2k for some k ∈ Z

I An integer n is odd if n = 2k + 1 for some k ∈ Z



Products of Odd and Even numbers

Fact: The product of two odd integers is odd.

Corollary: If n is odd then n2 is odd.

Fact: If n2 is even then n is even.

Fact: Let n be any integer. The following statements are equivalent:

(1) n is even

(2) n+ 1 is odd

(3) n2 is even



Proof by Contradiction

Goal: Establish proposition p

Idea: Assume p is false and derive a contradiction

Formally

I Establish truth of ¬p→ F

I Conclude ¬p is false, so p is true.

Fact: The square root of 2 is irrational.



Proof Methods and Strategy



Exhaustive proofs, proofs by cases

A. Exhaustive proof: Sufficient to consider and check a small number of
examples.

Fact: There is no solution in integers of the equation x2 + 2y4 = 8.

B. Proof by cases: To establish p→ q express p = p1 ∨ · · · ∨ pk as a
disjunction of cases pj and then establish pj → q for j = 1, . . . , k.

Fact: The last digit of a perfect square is 0, 1, 4, 5, 6, or 9



Existence Proof

Goal: Establish proposition of the form ∃xP (x).

I Constructive: Exhibit x such that P (x) is true.

I Non-constructive: Establish truth of ∃xP (x) without exhibiting a specific
x for which P (x) is true.

Fact: There is an irrational number x such that xx is rational.

Fact: If the average a of n numbers a1, . . . , an is greater than α, then at least
one of the numbers is greater than α.


