Introduction to Decision Sciences
 Lecture 3

Andrew Nobel

August 29, 2017

Predicates and Quantifiers

Predicates

Definition: A domain U is a set of objects x of interest.

Definition: A predicate P for U is a property of the objects $x \in U$ such that every $x \in U$ has P, or does not have P, but not both.

Think: Predicate $P \Leftrightarrow$ set of $x \in U$ having property P

Propositional function: If P is a predicate and x is in U then

$$
P(x)=\text { proposition "object } x \text { has property } P \text { " }
$$

Thus $P(x)$ is T if x has property P, and $P(x)$ is F otherwise.

Examples of Predicates

Example: Domain $U=$ all undergraduates at UNC

- Predicate P is the property of being a Senior
- Predicate Q is property of being enrolled in STOR 215
- $P(\mathrm{Bob})=$ "Bob is a Senior at UNC"
- Q (Kelly $)=$ "Kelly is enrolled in STOR 215"

Examples of Predicates

Example: Even numbers

- Set $U=$ positive integers $\{1,2,3, \ldots\}$
- Predicate P is the property of being even
- $P(x)=$ " x is even"

Example: Perfect squares

- Set $U=$ positive integers $\{1,2,3, \ldots\}$
- Predicate Q is the property of being a perfect square
- $Q(x)=$ " x is a perfect square"

More Exotic Example

Example: Pythagorean triples

- Set $U=$ all triples (x, y, z) of positive integers
- Predicate P is the property of being a Pythagorean triple
- $P(x)$ is the statement $x^{2}+y^{2}=z^{2}$

Quantifiers

Two flavors

- Universal: \forall means "for all"
- Existential: \exists means "there exists"

Definition: Let P be a predicate on a domain U

- $\forall x P(x)$ is a proposition that is T if and only if $P(x)$ is T for each x in U
- $\exists x P(x)$ is a proposition that is T if and only if $P(x)$ is T for some x in U

In other words

- $\forall x P(x)$ is true if every element of U has property P
- $\exists x P(x)$ is true if some element of U has property P

Quantifiers, cont.

Note: If domain $U=\left\{x_{1}, \ldots, x_{n}\right\}$ is finite, then

- $\forall x P(x) \equiv P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge \cdots \wedge P\left(x_{n}\right)$
- $\exists x P(x) \equiv P\left(x_{1}\right) \vee P\left(x_{2}\right) \vee \cdots \vee P\left(x_{n}\right)$

Note: Truth of $\forall x P(x)$ and $\exists x P(x)$ depends on domain U

- Domains: $U=$ positive integers, $V=\{2,4,6,8\}$
- Predicates: $P=$ even, $Q=$ perfect square

Expressions with Quantifiers

Note: Quantifiers \exists, \forall have higher precedence than other logical operations

Definitions: In an expression with quantifiers

- A variable x is bound if it is the subject of a quantifier, and free otherwise
- If all variables in an expression are bound, it is a proposition. Otherwise, it is a new predicate.
- The scope of a quantifier is the set of predicates to which it applies.

Example

- $\forall x(P(x) \vee Q(x))$
- $\forall x P(x) \vee Q(y)$

Logical Equivalence

Definition: Two propositions with quantifiers are logically equivalent if they have the same truth value, whatever the choice of predicates and domains.

Example

- $\forall x \forall y R(x, y) \equiv \forall y \forall x R(x, y)$ (and similarly for \exists)
- $\forall x(P(x) \wedge Q(x)) \equiv \forall x P(x) \wedge \forall x Q(x)$
- $\neg \exists x P(x) \equiv \forall x \neg P(x) \quad$ (De Morgan)
- $\neg \forall x P(x) \equiv \exists x \neg P(x) \quad$ (De Morgan)

But note...

- $\forall x(P(x) \vee Q(x)) \not \equiv \forall x P(x) \vee \forall x Q(x)$
- $\exists x \forall y R(x, y) \not \equiv \forall y \exists x R(x, y)$

Translation with Operations and Quantifiers

General rules: Domain U with elements x

- $\forall=$ for all, all, every $x \in U$
- $\exists=$ there exists, there is, some, at least one $x \in U$
- $\wedge=$ and,$\vee=$ or, $\neg=$ not
- $p \rightarrow q=$ if p then q, or p is sufficient for q, or q is necessary for p

Translation Example

Domain $U=$ all students at UNC. Consider the following predicates

$$
C=\text { taking STOR } 215
$$

$E=$ speaks English, $F=$ speaks French, $G=$ speaks Greek

- All students at UNC speak English
- Some UNC students are taking 215
- Every 215 student speaks French
- Some 215 student speaks Greek
- No 215 student speaks Greek
- Some 215 student speaks French and Greek
- Every 215 student who speaks French also speaks Greek
- Some 215 student does not speak French

Nested Quantifiers

Expressions with Nested Quantifiers

Given: Predicates $P(x, y)$ and $R(x, y, z)$

Examples

- $\forall x \exists y P(x, y)$
- $\exists x \forall y(P(x, y) \vee \exists z R(x, y, z))$

Note: these expressions are propositions (they have no free variables), so they are either T or F

Two Examples

A. Let $U=(-\infty, \infty)$ and $Q(x, y): y^{2} \geq 2 x+1$

- $\forall x \exists y Q(x, y)$
- $\exists x \forall y Q(x, y)$
- $\exists y \forall x Q(x, y)$
- $\forall x \forall y Q(x, y)$
B. Let $U=$ all students at UNC and $K(x, y)=x$ knows y
- $\exists y \forall x K(x, y)$
- $\forall x \exists y K(x, y)$
- $\forall x \forall y(K(x, y) \rightarrow K(y, x))$

Negation of Expressions with Nested Quantifiers

Arises in many mathematical arguments, e.g., proofs by contradiction and proofs by contraposition.

Idea: Successively apply De Morgan's laws for (i) quantifiers and (ii) compound propositions.

Example: Negation of $\forall x \exists y Q(x, y)$

Example: Negation of $\exists x \forall y(Q(x, y) \vee \exists z R(x, y, z))$

Translation with Nested Quantifiers

Example

- The product of two positive numbers is positive.
- Negation of this proposition.

Example

- Every positive number is the square of some non-zero number.
- Negation of this proposition.

Example

- Every positive number is the square of a unique positive number.
- Negation of this proposition.

Introduction to Proofs

Theorems and Proofs

Definition: A theorem is a true mathematical statement. The argument establishing the truth of a theorem is called a proof. Standard forms:
A. Proposition p (Ex: $\sqrt{2}$ is irrational.)

- Direct: directly establish truth of p
- Contradiction: assume $\neg p$ and derive a contradiction.
B. Implication $p \rightarrow q$ (Ex: If m, n are even, so is $m n$.)
- Direct: assume p and then show q
- Contraposition: assume $\neg q$ and then show $\neg p$
C. Biconditional $p \leftrightarrow q$ ($\mathrm{Ex}: n^{2}$ is even if and only if n is even.)
- Direct: establish chain of equivalences between p and q
- First show $p \rightarrow q$ then show $q \rightarrow p$

Terminology Used in Mathematical Practice

- A Theorem is major or important result
- A Proposition is minor, less important result
- A Lemma is a supporting result, used in the proof of a theorem or proposition
- A Corollary is an immediate or easy consequence of a theorem or proposition

Odd, Even, and Rational Numbers

Notation:

- Positive Integers $\mathbb{N}_{+}=\{1,2, \ldots\}$
- Natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$
- Integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Rational numbers $\mathbb{Q}=\{a / b: a, b \in \mathbb{Z}$ and $b \neq 0\}$
- Real numbers $\mathbb{R}=(-\infty, \infty)$

Definition

- An integer n is even if $n=2 k$ for some $k \in \mathbb{Z}$
- An integer n is odd if $n=2 k+1$ for some $k \in \mathbb{Z}$

Products of Odd and Even numbers

Fact: The product of two odd integers is odd.

Corollary: If n is odd then n^{2} is odd.

Fact: If n^{2} is even then n is even.

Fact: Let n be any integer. The following statements are equivalent:
(1) n is even
(2) $n+1$ is odd
(3) n^{2} is even

Proof by Contradiction

Goal: Establish proposition p

Idea: Assume p is false and derive a contradiction

Formally

- Establish truth of $\neg p \rightarrow F$
- Conclude $\neg p$ is false, so p is true.

Fact: The square root of 2 is irrational.

Proof Methods and Strategy

Exhaustive proofs, proofs by cases

A. Exhaustive proof: Sufficient to consider and check a small number of examples.

Fact: There is no solution in integers of the equation $x^{2}+2 y^{4}=8$.
B. Proof by cases: To establish $p \rightarrow q$ express $p=p_{1} \vee \cdots \vee p_{k}$ as a disjunction of cases p_{j} and then establish $p_{j} \rightarrow q$ for $j=1, \ldots, k$.

Fact: The last digit of a perfect square is $0,1,4,5,6$, or 9

Existence Proof

Goal: Establish proposition of the form $\exists x P(x)$.

- Constructive: Exhibit x such that $P(x)$ is true.
- Non-constructive: Establish truth of $\exists x P(x)$ without exhibiting a specific x for which $P(x)$ is true.

Fact: There is an irrational number x such that x^{x} is rational.

Fact: If the average \bar{a} of n numbers a_{1}, \ldots, a_{n} is greater than α, then at least one of the numbers is greater than α.

