Introduction to Decision Sciences Lecture 3

Andrew Nobel

August 29, 2017

Predicates and Quantifiers

Predicates

Definition: A *domain* U is a set of objects x of interest.

Definition: A *predicate* P for U is a property of the objects $x \in U$ such that every $x \in U$ has P, or does not have P, but not both.

Think: Predicate $P \Leftrightarrow$ set of $x \in U$ having property P

Propositional function: If P is a predicate and x is in U then

P(x) = proposition "object x has property P"

Thus P(x) is T if x has property P, and P(x) is F otherwise.

Examples of Predicates

Example: Domain U =all undergraduates at UNC

- Predicate P is the property of being a Senior
- Predicate Q is property of being enrolled in STOR 215
- P(Bob) = "Bob is a Senior at UNC"
- Q(Kelly) = "Kelly is enrolled in STOR 215"

Examples of Predicates

Example: Even numbers

- Set U =positive integers $\{1, 2, 3, \ldots\}$
- Predicate P is the property of being even
- ▶ P(x) = "x is even"

Example: Perfect squares

- Set U =positive integers $\{1, 2, 3, \ldots\}$
- Predicate Q is the property of being a perfect square
- Q(x) = "x is a perfect square"

Example: Pythagorean triples

- Set U = all triples (x, y, z) of positive integers
- Predicate P is the property of being a Pythagorean triple
- P(x) is the statement $x^2 + y^2 = z^2$

Quantifiers

Two flavors

- ▶ Universal: ∀ means "for all"
- ► Existential: ∃ means "there exists"

Definition: Let P be a predicate on a domain U

- $\forall x P(x)$ is a proposition that is T if and only if P(x) is T for each x in U
- $\exists x P(x)$ is a proposition that is T if and only if P(x) is T for some x in U

In other words

- ▶ $\forall x P(x)$ is true if every element of U has property P
- ► $\exists x P(x)$ is true if some element of U has property P

Quantifiers, cont.

Note: If domain $U = \{x_1, \ldots, x_n\}$ is finite, then

$$\forall x P(x) \equiv P(x_1) \land P(x_2) \land \dots \land P(x_n)$$

$$\exists x P(x) \equiv P(x_1) \lor P(x_2) \lor \cdots \lor P(x_n)$$

Note: Truth of $\forall x P(x)$ and $\exists x P(x)$ depends on domain U

- Domains: $U = \text{positive integers}, V = \{2, 4, 6, 8\}$
- Predicates: P = even, Q = perfect square

Expressions with Quantifiers

Note: Quantifiers \exists , \forall have higher precedence than other logical operations

Definitions: In an expression with quantifiers

- A variable x is *bound* if it is the subject of a quantifier, and *free* otherwise
- If all variables in an expression are bound, it is a proposition. Otherwise, it is a new predicate.
- The *scope* of a quantifier is the set of predicates to which it applies.

Example

- $\blacktriangleright \ \forall x \left(P(x) \lor Q(x) \right)$
- $\blacktriangleright \forall x P(x) \lor Q(y)$

Logical Equivalence

Definition: Two propositions with quantifiers are logically equivalent if they have the same truth value, whatever the choice of predicates and domains.

Example

► $\forall x \forall y R(x, y) \equiv \forall y \forall x R(x, y)$ (and similarly for \exists)

$$\forall x \left(P(x) \land Q(x) \right) \equiv \forall x P(x) \land \forall x Q(x)$$

•
$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$
 (De Morgan)

•
$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
 (De Morgan)

But note ...

$$\forall x (P(x) \lor Q(x)) \not\equiv \forall x P(x) \lor \forall x Q(x)$$

$$\blacksquare \exists x \,\forall y \, R(x,y) \not\equiv \forall y \,\exists x \, R(x,y)$$

Translation with Operations and Quantifiers

General rules: Domain U with elements x

▶
$$\forall$$
 = for all, all, every $x \in U$

▶ \exists = there exists, there is, some, at least one $x \in U$

$$\land$$
 = and, \lor = or, \neg = not

▶ $p \rightarrow q = \text{if } p \text{ then } q$, or p is sufficient for q, or q is necessary for p

Translation Example

Domain U = all students at UNC. Consider the following predicates

C = taking STOR 215

E = speaks English, F = speaks French, G = speaks Greek

- All students at UNC speak English
- Some UNC students are taking 215
- Every 215 student speaks French
- Some 215 student speaks Greek
- No 215 student speaks Greek
- Some 215 student speaks French and Greek
- Every 215 student who speaks French also speaks Greek
- Some 215 student does not speak French

Nested Quantifiers

Expressions with Nested Quantifiers

Given: Predicates P(x, y) and R(x, y, z)

Examples

- $\blacktriangleright \forall x \exists y P(x, y)$
- $\blacktriangleright \ \exists x \, \forall y \, (P(x,y) \lor \exists z \, R(x,y,z))$

Note: these expressions are propositions (they have no free variables), so they are either T or ${\sf F}$

Two Examples

A. Let $U = (-\infty, \infty)$ and $Q(x, y) : y^2 \ge 2x + 1$

- $\blacktriangleright \ \forall x \, \exists y \, Q(x,y)$
- $\blacktriangleright \ \exists x \, \forall y \, Q(x,y)$
- $\blacktriangleright \ \exists y \, \forall x \, Q(x,y)$
- $\blacktriangleright \ \forall x \, \forall y \, Q(x,y)$

B. Let U = all students at UNC and K(x, y) = x knows y

- $\blacktriangleright \exists y \,\forall x \, K(x,y)$
- $\blacktriangleright \ \forall x \, \exists y \, K(x,y)$
- $\blacktriangleright \ \forall x \, \forall y \, (K(x,y) \to K(y,x))$

Negation of Expressions with Nested Quantifiers

Arises in many mathematical arguments, e.g., proofs by contradiction and proofs by contraposition.

Idea: Successively apply De Morgan's laws for (i) quantifiers and (ii) compound propositions.

Example: Negation of $\forall x \exists y Q(x, y)$

Example: Negation of $\exists x \forall y (Q(x, y) \lor \exists z R(x, y, z))$

Translation with Nested Quantifiers

Example

- The product of two positive numbers is positive.
- Negation of this proposition.

Example

- Every positive number is the square of some non-zero number.
- Negation of this proposition.

Example

- Every positive number is the square of a unique positive number.
- Negation of this proposition.

Introduction to Proofs

Theorems and Proofs

Definition: A *theorem* is a true mathematical statement. The argument establishing the truth of a theorem is called a *proof.* Standard forms:

- A. Proposition p (Ex: $\sqrt{2}$ is irrational.)
 - Direct: directly establish truth of p
 - Contradiction: assume $\neg p$ and derive a contradiction.
- B. Implication $p \rightarrow q$ (Ex: If m, n are even, so is mn.)
 - Direct: assume p and then show q
 - \blacktriangleright Contraposition: assume $\neg q$ and then show $\neg p$
- C. Biconditional $p \leftrightarrow q$ (Ex: n^2 is even if and only if n is even.)
 - \blacktriangleright Direct: establish chain of equivalences between p and q
 - \blacktriangleright First show $p \rightarrow q$ then show $q \rightarrow p$

Terminology Used in Mathematical Practice

- A Theorem is major or important result
- A Proposition is minor, less important result
- A Lemma is a supporting result, used in the proof of a theorem or proposition
- A Corollary is an immediate or easy consequence of a theorem or proposition

Odd, Even, and Rational Numbers

Notation:

- Positive Integers $\mathbb{N}_+ = \{1, 2, \ldots\}$
- Natural numbers $\mathbb{N} = \{0, 1, 2, \ldots\}$
- Integers $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- Rational numbers $\mathbb{Q} = \{a/b : a, b \in \mathbb{Z} \text{ and } b \neq 0\}$
- Real numbers $\mathbb{R} = (-\infty, \infty)$

Definition

- An integer n is *even* if n = 2k for some $k \in \mathbb{Z}$
- An integer n is odd if n = 2k + 1 for some $k \in \mathbb{Z}$

Products of Odd and Even numbers

Fact: The product of two odd integers is odd.

Corollary: If n is odd then n^2 is odd.

Fact: If n^2 is even then n is even.

Fact: Let *n* be any integer. The following statements are equivalent:

- (1) n is even
- (2) n + 1 is odd
- (3) n^2 is even

Proof by Contradiction

Goal: Establish proposition p

Idea: Assume p is false and derive a contradiction

Formally

- Establish truth of $\neg p \rightarrow F$
- Conclude $\neg p$ is false, so p is true.

Fact: The square root of 2 is irrational.

Proof Methods and Strategy

Exhaustive proofs, proofs by cases

A. Exhaustive proof: Sufficient to consider and check a small number of examples.

Fact: There is no solution in integers of the equation $x^2 + 2y^4 = 8$.

B. Proof by cases: To establish $p \rightarrow q$ express $p = p_1 \lor \cdots \lor p_k$ as a disjunction of cases p_j and then establish $p_j \rightarrow q$ for $j = 1, \dots, k$.

Fact: The last digit of a perfect square is 0, 1, 4, 5, 6, or 9

Existence Proof

Goal: Establish proposition of the form $\exists x P(x)$.

- Constructive: Exhibit x such that P(x) is true.
- ▶ Non-constructive: Establish truth of $\exists x P(x)$ without exhibiting a specific x for which P(x) is true.

Fact: There is an irrational number x such that x^x is rational.

Fact: If the average \overline{a} of *n* numbers a_1, \ldots, a_n is greater than α , then at least one of the numbers is greater than α .