# Introduction to Decision Sciences <br> Lecture 2 

Andrew Nobel

August 24, 2017

## Compound Proposition

A compound proposition is a combination of propositions using the basic operations. For example

- $\neg(p \wedge q)$
- $(\neg p) \vee(\neg q)$
- $\neg(p \vee q) \wedge q$


## Conditional (If-Then) Statement

Implication: $p$ implies $q$

- Denoted $p \rightarrow q$
- In words: "if $p$ then $q$ " (also " $q$ if $p$ ", " $p$ sufficient for $q$ ",...)
- Truth value: $p \rightarrow q$ is F only if $p$ is T and $q$ is F


## Truth Table

Note: If $p$ is F then $p \rightarrow q$ is T

Fact: $p \rightarrow q$ is logically equivalent to (has same truth values as) $\neg p \vee q$

## Other Conditional Statements

Given: Propositions $p$ and $q$, implication $p \rightarrow q$

- Converse of $p \rightarrow q$ is $q \rightarrow p$
- Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
- Biconditional $p \leftrightarrow q$ defined by $(p \rightarrow q) \wedge(q \rightarrow p)$

Truth tables

## Fact

- Contrapositive $\neg q \rightarrow \neg p$ equivalent to $p \rightarrow q$
- Biconditional $p \leftrightarrow q$ is T only when $p, q$ have same truth values


## Precedence of Operators

Notational device to save parentheses and simplify written expressions.
Add parentheses around elements of compound proposition in the following order of priority (first to last):

$$
\neg \wedge \vee \rightarrow \leftrightarrow
$$

Example: $\neg p \rightarrow q \wedge p$ is the same as $(\neg p) \rightarrow(q \wedge p)$.
Example: $\neg p \wedge q$ is the same as $(\neg p) \wedge q$.

When in doubt: use parentheses

## Translation

Translation is the action of representing English sentences as logical expressions, and vice-versa

- Common activity when reading or proving theorems
- Enables one to check the validity of complex expressions where common sense may fail


## Tautologies and Contradictions

Definition: A compound proposition is a

- Tautology if it is always true, whatever the truth values of its constituent propositions.
- Contradiction if it is always false, whatever the truth values of its constituent propositions.

Note: A single true proposition, e.g. $4 \geq 2$, is not considered to be a tautology. Likewise, a false proposition is not a contradiction.

Examples

- $p=q \vee \neg q$
- $p=q \wedge \neg q$


## Logical Equivalence

Definition: Two compound propositions $r$ and $s$ are logically equivalent, written $r \equiv s$, if they have the same truth values, whatever the truth values of their constituent propositions.

Equivalently, $r \equiv s$ if $r \leftrightarrow s$ is a tautology

## Examples

- $\neg(p \wedge q) \equiv \neg p \vee \neg q$
- $p \rightarrow q \equiv \neg p \vee q$

Equivalences can be verified by looking at truth tables, but for complex examples, it is helpful to have a set of simple rules that can be applied sequentially to an expression of interest.

Some notation: $T=$ tautology, $F=$ contradiction

## Logical Equivalence

A. Unconditional Rules

- Identity: $p \wedge T \equiv p, p \vee F \equiv p$
- Domination: $p \wedge F \equiv F, p \vee T \equiv T$
- Idempotence: $p \wedge p \equiv p, p \vee p \equiv p$
- Double negation: $\neg(\neg p) \equiv p$
- Commutative: $p \vee q \equiv q \vee p, p \wedge q \equiv q \wedge p$,
- Associative: $p \vee(q \vee r) \equiv(p \vee q) \vee r$ and $p \wedge(q \wedge r) \equiv(p \wedge q) \wedge r$
- De Morgan: $\neg(p \wedge q) \equiv \neg p \vee \neg q$ and $\neg(p \vee q) \equiv \neg p \wedge \neg q$
- Absorbtion: $p \vee(p \wedge q) \equiv p$ and $p \wedge(p \vee q) \equiv p$


## Logical Equivalences, continued

- Distributive

$$
\begin{aligned}
& p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\
& p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)
\end{aligned}
$$

B. Conditional Rules

- $p \rightarrow q \equiv \neg p \vee q$
- $p \rightarrow q \equiv \neg q \rightarrow \neg p$
- $p \vee q \equiv \neg p \rightarrow q$
C. Biconditional Rules
- $p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)$
- $p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$


## Predicates

Definition: A domain is a collection/set $U$ of objects $x$ of interest

Definition: A predicate $P$ for $U$ is a property of the objects $x \in U$ such that every $x \in U$ has $P$, or does not have $P$, but not both.

Note: Predicate equivalent to the subset of $x \in U$ having property $P$

Propositional function: If $P$ is a predicate and $x$ is in $U$ let

$$
P(x)=\text { proposition "object } x \text { has property } P \text { " }
$$

Thus $P(x)$ is T if $x$ has property $P$ and F otherwise.

## Examples of Predicates

## Example: UNC Students

- Set $U=$ all undergraduates currently enrolled at UNC
- Predicate $P$ is the property of being a Senior
- Predicate $Q$ is property of being enrolled in STOR 215
- $P(\mathrm{Bob})=$ "Bob is a Senior at UNC"
- $Q$ (Kelly $)=$ "Kelly is enrolled in STOR 215"


## Examples of Predicates

## Example: Even integers

- Set $U=$ positive integers $\{1,2,3, \ldots\}$
- Predicate $P$ is the property of being even
- $P(x)=$ " $x$ is even"

Example: Perfect squares

- Set $U=$ positive integers $\{1,2,3, \ldots\}$
- Predicate $Q$ is the property of being a perfect square
- $P(x)=$ " $x$ is a perfect square"


## Quantifiers

Two flavors

- Universal: $\forall$ means "for all"
- Existential: $\exists$ means "there exists"

Definition: Let $P$ be a predicate on a domain $U$

- $\forall x P(x)$ is a proposition that is T if and only if $P(x)$ is T for each $x$ in $U$
- $\exists x P(x)$ is a proposition that is T if and only if $P(x)$ is T for some $x$ in $U$

In other words

- $\forall x P(x)$ is true if every element of $U$ has property $P$
- $\exists x P(x)$ is true if some element of $U$ has property $P$


## Quantifiers, cont.

Note: If domain $U=\left\{x_{1}, \ldots, x_{n}\right\}$ is finite, then

- $\forall x P(x) \equiv P\left(x_{1}\right) \wedge P\left(x_{2}\right) \wedge \cdots \wedge P\left(x_{n}\right)$
- $\exists x P(x) \equiv P\left(x_{1}\right) \vee P\left(x_{2}\right) \vee \cdots \vee P\left(x_{n}\right)$

Note: Truth of $\forall x P(x)$ and $\exists x P(x)$ depends on domain $U$

## Example

- Domains: $U=$ positive integers, $V=\{2,4,6,8\}$
- Predicates: $P=$ even, $Q=$ perfect square

