Introduction to Decision Sciences
 Lecture 1

Andrew Nobel

August 22, 2017

Course Overview

I. Basic "mathematical literacy" and reasoning skills

- Logic: propositions, compound expressions, and quantifiers
- Proofs: direct, indirect, proof by cases, induction
- Sets, functions, and summations
II. Introduction/application to subjects of importance in decision sciences
- Number theory: divisibility, modular arithmetic, and primes
- Combinatorics: permutations, combinations, binomial coefficients
- Discrete probability
- Graphs and networks

True and False

Recall: the positive integers are the counting numbers $1,2,3, \ldots$

Consider the following statements (equations) involving the positive integers

$$
1+1=2
$$

$$
6+5=13
$$

$$
235+587=622
$$

$$
564+67=92
$$

Which equations are true, and which are false?

An Equation

The examples above are special cases of the equation

$$
x+y=z
$$

in which x, y, z are positive integers. Some terminology:

- If $x_{0}+y_{0}=z_{0}$ is true, we say x_{0}, y_{0}, z_{0} is a solution of $x+y=z$
- Otherwise x_{0}, y_{0}, z_{0} is not a solution

Fact: The equation $x+y=z$

- has a solution
- has infinitely many solutions

A Pythagorean Equation

Suppose again that x, y, z are positive integers and consider the equation

$$
x^{2}+y^{2}=z^{2}
$$

This new equation also has solutions, for example,

- $x=3, y=4, z=5$ and $x=5, y=12, z=13$

Fact: The equation $x^{2}+y^{2}=z^{2}$

- has a solution
- has infinitely many solutions

A Hard Problem

Suppose again that x, y, z are positive integers and consider the equation

$$
x^{3}+y^{3}=z^{3}
$$

It turns out that this equation has no solutions. More generally we have...

Fermat's Last Theorem: If $k \geq 3$ then the equation $x^{k}+y^{k}=z^{k}$ has no positive integer solutions.

- The theorem was stated by Pierre de Fermat around 1637.
- Andrew Wiles proved the theorem in 1995, over 350 years later!

One moral: A theorem that is easy to state may not be easy to prove.

Introduction to Logic

Logic is the formal language of mathematical reasoning.

- Used to express axioms and definitions
- Used to state and prove theorems

Basic Components

- Propositions
- Basic operations and conditional statements
- Compound propositions
- Quantifiers

Propositions

A proposition is a declarative statement or assertion that is either true (T) or false (F), but not both.

The truth value of a proposition is T if it is true, and F if it is false.
Propositions denoted by letters p, q, r, s, \ldots, called propositional variables

Examples

- p : Today is May 23rd
- $q: 3+2=5$
- $r: 4 \geq-5$
- s : UNC won the NCAA championship in 2017

Operations on Propositions

Basic Operations

- Negation (not)
- Conjunction (and)
- Dysjunction (or)
- Conditional (if-then)

Idea

- Operations combine simple propositions p and q to get new ones
- Truth value of the combination depends on the truth values of p and q
- Can keep track of truth values using truth tables

Negation

Negation of proposition p

- Denoted $\neg p$
- In words: "not p ".
- Truth value: $\neg p$ is T if p is F , and vice versa

Truth Table

Conjunction

Conjunction of propositions p and q

- Denoted $p \wedge q$
- In words: " p and q ".
- Truth value: $p \wedge q$ is T if p and q are T , and is false otherwise.

Truth Table

Disjunction

Disjunction of propositions p and q

- Denoted $p \vee q$
- In words: " p or q ".
- Truth value: $p \vee q$ is T if at least one of p and q is T , and is F otherwise

Truth Table

Compound Proposition

A compound proposition is a combination of propositions using the basic operations. For example

- $\neg(p \wedge q)$
- $(\neg p) \vee(\neg q)$
- $\neg(p \vee q) \wedge q$

Conditional (If-Then) Statement

Implication: p implies q

- Denoted $p \rightarrow q$
- In words: "if p then q " (also " q if p ", " p sufficient for q ",...)
- Truth value: $p \rightarrow q$ is F only if p is T and q is F

Truth Table

Note: If p is F then $p \rightarrow q$ is T

Fact: $p \rightarrow q$ is logically equivalent to (has same truth values as) $\neg p \vee q$

