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1. GAUSSIAN COMPARISION LEMMA

Lemma 1.1. Let G : R™ — R be a bounded, twice continuously differentiable function with
bounded derivatives

0G(x) , 0G(z) .
Gi(x) = oz, 1<i<n and Gij:m 1<i, 7 <n.
If X ~ N (0,2x) and Y ~ N, (0,Xy) are normal random vectors then
EG(Y) - ZAU/ E G,;(X") dt
i,j=1

where Aij = EKY}—EXZXJ = (Ey — ZX)ij and Xt ~ ./\/'n(O, Et) with Et = (1—t> Zx—i-tzy.

Proof: Assume without loss of generality that X and Y are independent. For each ¢ € [0, 1]
define the random vector
Xi=(1-)"2X+t/2Y

and the associated function () = EG(X!). Note that X° = X, X! = Y, and that X! ~
N, (0,3;), where 3; is defined as in the statement of the lemma. Thus

1
EG(Y) - EG(X) = ¢(1) - ¢(0) = /0 M ors

and it suffices to show that for each t € (0,1)

1 n
(L1) P =5 3 AyBG(X).

ij=1

To this end, fix t € (0,1) and note that X' is distributed as Eg/QZ where Z ~ N(0,1) is
a standard normal random vector with independent components. To simplify notation, let

As = Eg /2 1t follows from our regularity assumptions and the chain rule that

St = %EG(At Z) = E[CZG(AtZ)] =2 ;Gi(AtZ)jt(AtZ)i
(1.2) = Y (4D E(Z;Gi(A 7)),
i,j=1

where A} denotes the entry-by-entry derivative of the matrix A;. Fix i, j for the moment and
define the function

Hl](s) = EG%(AIL ZS) where Zs := (Zlv"' 7Zj71757Zj+17"' 7Zn)
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It follows from a simple conditioning argument and Gaussian integration by parts that

By another application of the chain rule,
d d
/ _
H(s) = E [ds ] ZE [ (A1 Zs) (A1 Zs)s
= > (A)jrEGin(A Zs).
k=1
Thus, as 71, ..., Z, are independent,
EH};(Z;) =Y (A)jrEGin(A Z).
k=1

Combining this last equation with (|1.2]), we find that

n

) = > EGk(AZ)- Y (A)i(Ar);
7=1

i,k=1
(1.4) = > EGk(X") - (4] Ak
i,k=1

Recalling that A4; = %, 12 , it is easy to see that (A7)}, = (3;)}, = A. Furthermore, as A;
and A} are symmetric,

(1.5) (A7) = ALA + AcA] = ALA + (A AT

Fix 1 < i < k < n. Continuity of the second partial derivatives ensures that G;; = Gp;, and
therefore

EGi(XY) - (A, Ak + EGRi(X?) - (A} A
= EGx(X") (4A)x + (AtA)k:)
= EGw(X") (AD)j, = EGx(X") A,

where the penultimate equality follows from (1.5). A similar argument shows that (A} A;)i; =
Aj;/2. Thus (1.1)) follows from (1.2)), and the proof is complete.
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1.1. Further Reading: Gaussian Tail Bounds. Let ®(z) = 1 — ®(x) where ®(x) is the
cumulative distribution function of the standard Gaussian distribution. Recall that for z > 0,

(1.6) B(z) < ———e?/2.

2mx

The proof of Theorem ?7? requires an inequality for the probability that two correlated Gauss-
ian random variables each exceeds a common threshold.

Lemma 1.2. Let (Z,Z,) be jointly Gaussian random variables with mean 0, variance 1, and
correlation E(ZZ,) = p € (=1,1). Then for any u > 0,

(1+p)?

2ru?\/1 — p?

Proof of Lemma [1.2] Fix u > 0. When p > 0 the proof follows from known inequalities in
the literature (see R. Willink, Bounds on the bivariate normal distribution function, Comm.
Statist. Theory Methods 33 (2004), pp.2281-2297). Here we consider the case p < 0. Note
that we may write Z, = pZ + /1 — p?Z’, where Z’ is a standard Gaussian random variable
independent of Z. By conditioning on the value of Z, it is easy to see that

(1.7) P(Z >wu,Z,>u) < exp (—u®/(1+ p)).

18 PEsuzmw = [ B0) o e ott) = 7=

Now define

1- -
n= 1+Z and h(m)ZCIQ/ZCI)($).

As W(z) = ze”/2®(x) — 1//27, inequality (1.6) implies that h(z) is decreasing for z > 0.
It follows from equation (|1.8]) that

(1.9) P(Z>u,Z,>u) = / O h(g(t)) (t) dt

N

gt [ 002 (1 o

= hi) / T2 (1) a,

where in the last step we have used the fact that g(u) = nu. Routine algebra and a change of
variables establishes that

22 _ e [T (t—pu)?
(1.10) /u eI 2pt)ydt = e /u mexp< 2(1—p2)>dt

= 1-—p? e_“2/2<f>(77u).
Combining (1.9), (1.11)), and inequality ((1.6)) yields the bound ((1.7)), as desired. [ |
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