GAUSSIAN COMPARISON LEMMA

1. Gaussian Comparision Lemma

Lemma 1.1. Let $G: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a bounded, twice continuously differentiable function with bounded derivatives

$$
G_{i}(x)=\frac{\partial G(x)}{\partial x_{i}} \quad 1 \leqslant i \leqslant n \quad \text { and } \quad G_{i j}=\frac{\partial G(x)}{\partial x_{i} \partial x_{j}} \quad 1 \leqslant i, j \leqslant n .
$$

If $\mathbf{X} \sim \mathcal{N}_{n}\left(0, \Sigma_{X}\right)$ and $\mathbf{Y} \sim \mathcal{N}_{n}\left(0, \Sigma_{Y}\right)$ are normal random vectors then

$$
\mathbb{E} G(\mathbf{Y})-\mathbb{E} G(\mathbf{X})=\frac{1}{2} \sum_{i, j=1}^{n} \Delta_{i j} \int_{0}^{1} \mathbb{E} G_{i j}\left(\mathbf{X}^{t}\right) d t
$$

where $\Delta_{i j}=\mathbb{E} Y_{i} Y_{j}-\mathbb{E} X_{i} X_{j}=\left(\Sigma_{Y}-\Sigma_{X}\right)_{i j}$ and $\mathbf{X}^{t} \sim \mathcal{N}_{n}\left(0, \Sigma_{t}\right)$ with $\Sigma_{t}:=(1-t) \Sigma_{X}+t \Sigma_{Y}$.
Proof: Assume without loss of generality that \mathbf{X} and \mathbf{Y} are independent. For each $t \in[0,1]$ define the random vector

$$
\mathbf{X}^{t}=(1-t)^{1 / 2} \mathbf{X}+t^{1 / 2} \mathbf{Y}
$$

and the associated function $\varphi(t)=\mathbb{E} G\left(\mathbf{X}^{t}\right)$. Note that $\mathbf{X}^{0}=\mathbf{X}, \mathbf{X}^{1}=\mathbf{Y}$, and that $\mathbf{X}^{t} \sim$ $\mathcal{N}_{n}\left(0, \Sigma_{t}\right)$, where Σ_{t} is defined as in the statement of the lemma. Thus

$$
\mathbb{E} G(\mathbf{Y})-\mathbb{E} G(\mathbf{X})=\varphi(1)-\varphi(0)=\int_{0}^{1} \varphi^{\prime}(t) d t
$$

and it suffices to show that for each $t \in(0,1)$

> phipr0

$$
\varphi^{\prime}(t)=\frac{1}{2} \sum_{i, j=1}^{n} \Delta_{i j} \mathbb{E} G_{i j}\left(\mathbf{X}^{t}\right) .
$$

To this end, fix $t \in(0,1)$ and note that \mathbf{X}^{t} is distributed as $\Sigma_{t}^{1 / 2} \mathbf{Z}$ where $\mathbf{Z} \sim \mathcal{N}(0, I)$ is a standard normal random vector with independent components. To simplify notation, let $A_{t}:=\Sigma_{t}^{1 / 2}$. It follows from our regularity assumptions and the chain rule that
phipr1

$$
\begin{aligned}
\varphi^{\prime}(t) & =\frac{d}{d t} \mathbb{E} G\left(A_{t} \mathbf{Z}\right)=\mathbb{E}\left[\frac{d}{d t} G\left(A_{t} \mathbf{Z}\right)\right]=\mathbb{E}\left[\sum_{i=1}^{n} G_{i}\left(A_{t} \mathbf{Z}\right) \frac{d}{d t}\left(A_{t} \mathbf{Z}\right)_{i}\right] \\
& =\sum_{i, j=1}^{n}\left(A_{t}^{\prime}\right)_{i j} \mathbb{E}\left(Z_{j} G_{i}\left(A_{t} \mathbf{Z}\right)\right)
\end{aligned}
$$

where A_{t}^{\prime} denotes the entry-by-entry derivative of the matrix A_{t}. Fix i, j for the moment and define the function

$$
H_{i j}(s):=\mathbb{E} G_{i}\left(A_{t} \mathbf{Z}_{s}\right) \quad \text { where } \quad \mathbf{Z}_{s}:=\left(Z_{1}, \cdots, Z_{j-1}, s, Z_{j+1}, \cdots, Z_{n}\right)
$$

It follows from a simple conditioning argument and Gaussian integration by parts that

$$
\begin{equation*}
\mathbb{E}\left[Z_{j} G_{i}\left(A_{t} \mathbf{Z}\right)\right]=\mathbb{E}\left[Z_{j} H_{i j}\left(Z_{j}\right)\right]=\mathbb{E} H_{i j}^{\prime}\left(Z_{j}\right) \tag{1.3}
\end{equation*}
$$

By another application of the chain rule,

$$
\begin{aligned}
H_{i j}^{\prime}(s) & =\mathbb{E}\left[\frac{d}{d s} G_{i}\left(A_{t} \mathbf{Z}_{s}\right)\right]=\sum_{k=1}^{n} \mathbb{E}\left[G_{i k}\left(A_{t} \mathbf{Z}_{s}\right) \frac{d}{d t}\left(A_{t} \mathbf{Z}_{s}\right)_{k}\right] \\
& =\sum_{k=1}^{n}\left(A_{t}\right)_{j k} \mathbb{E} G_{i k}\left(A_{t} \mathbf{Z}_{s}\right) .
\end{aligned}
$$

Thus, as Z_{1}, \ldots, Z_{n} are independent,

$$
\mathbb{E} H_{i j}^{\prime}\left(Z_{j}\right)=\sum_{k=1}^{n}\left(A_{t}\right)_{j k} \mathbb{E} G_{i k}\left(A_{t} \mathbf{Z}\right)
$$

Combining this last equation with (1.2), we find that

> phipr2

$$
\begin{aligned}
\varphi^{\prime}(t) & =\sum_{i, k=1}^{n} \mathbb{E} G_{i k}\left(A_{t} \mathbf{Z}\right) \cdot \sum_{j=1}^{n}\left(A_{t}^{\prime}\right)_{i j}\left(A_{t}\right)_{j k} \\
& =\sum_{i, k=1}^{n} \mathbb{E} G_{i k}\left(\mathbf{X}^{t}\right) \cdot\left(A_{t}^{\prime} A_{t}\right)_{i k} .
\end{aligned}
$$

Recalling that $A_{t}=\Sigma_{t}^{1 / 2}$, it is easy to see that $\left(A_{t}^{2}\right)_{i k}^{\prime}=\left(\Sigma_{t}\right)_{i k}^{\prime}=\Delta_{i k}$. Furthermore, as A_{t} and A_{t}^{\prime} are symmetric,

$$
\left(A_{t}^{2}\right)^{\prime}=A_{t}^{\prime} A_{t}+A_{t} A_{t}^{\prime}=A_{t}^{\prime} A_{t}+\left(A_{t}^{\prime} A_{t}\right)^{T} .
$$

Fix $1 \leqslant i<k \leqslant n$. Continuity of the second partial derivatives ensures that $G_{i k}=G_{k i}$, and therefore

$$
\begin{aligned}
& \mathbb{E} G_{i k}\left(\mathbf{X}^{t}\right) \cdot\left(A_{t}^{\prime} A_{t}\right)_{i k}+\mathbb{E} G_{k i}\left(\mathbf{X}^{t}\right) \cdot\left(A_{t}^{\prime} A_{t}\right)_{k i} \\
& \quad=\mathbb{E} G_{i k}\left(\mathbf{X}^{t}\right)\left(\left(A_{t}^{\prime} A_{t}\right)_{i k}+\left(A_{t}^{\prime} A_{t}\right)_{k i}\right) \\
& \\
& =\mathbb{E} G_{i k}\left(\mathbf{X}^{t}\right)\left(A_{t}^{2}\right)_{i k}^{\prime}=\mathbb{E} G_{i k}\left(\mathbf{X}^{t}\right) \Delta_{i k},
\end{aligned}
$$

where the penultimate equality follows from (1.5). A similar argument shows that $\left(A_{t}^{\prime} A_{t}\right)_{i i}=$ $\Delta_{i i} / 2$. Thus (1.1) follows from (1.2), and the proof is complete.
1.1. Further Reading: Gaussian Tail Bounds. Let $\bar{\Phi}(x)=1-\Phi(x)$ where $\Phi(x)$ is the cumulative distribution function of the standard Gaussian distribution. Recall that for $x>0$,

$$
\begin{equation*}
\bar{\Phi}(x) \leqslant \frac{1}{\sqrt{2 \pi} x} e^{-x^{2} / 2} \tag{1.6}
\end{equation*}
$$

The proof of Theorem ?? requires an inequality for the probability that two correlated Gaussian random variables each exceeds a common threshold.

biv-norm-tail

eq: zzr0
Lemma 1.2. Let $\left(Z, Z_{\rho}\right)$ be jointly Gaussian random variables with mean 0, variance 1, and correlation $\mathbb{E}\left(Z Z_{\rho}\right)=\rho \in(-1,1)$. Then for any $u>0$,

Proof of Lemma 1.2. Fix $u>0$. When $\rho \geqslant 0$ the proof follows from known inequalities in the literature (see R. Willink, Bounds on the bivariate normal distribution function, Comm. Statist. Theory Methods 33 (2004), pp.2281-2297). Here we consider the case $\rho<0$. Note that we may write $Z_{\rho}=\rho Z+\sqrt{1-\rho^{2}} Z^{\prime}$, where Z^{\prime} is a standard Gaussian random variable independent of Z. By conditioning on the value of Z, it is easy to see that
eq:zzr1

$$
\begin{equation*}
\mathbb{P}\left(Z>u, Z_{\rho}>u\right) \leqslant \frac{(1+\rho)^{2}}{2 \pi u^{2} \sqrt{1-\rho^{2}}} \exp \left(-u^{2} /(1+\rho)\right) \tag{1.7}
\end{equation*}
$$

Now define

$$
\eta=\sqrt{\frac{1-\rho}{1+\rho}} \text { and } h(x)=e^{x^{2} / 2} \bar{\Phi}(x)
$$

As $h^{\prime}(x)=x e^{x^{2} / 2} \bar{\Phi}(x)-1 / \sqrt{2 \pi}$, inequality (1.6) implies that $h(x)$ is decreasing for $x>0$. It follows from equation (1.8) that

$$
\begin{align*}
\mathbb{P}\left(Z>u, Z_{\rho}>u\right) & =\int_{u}^{\infty} e^{-g(t)^{2} / 2} h(g(t)) \phi(t) d t \tag{1.9}\\
& \leqslant h(g(u)) \int_{u}^{\infty} e^{-g(t)^{2} / 2} \phi(t) d t \\
& =h(\eta u) \int_{u}^{\infty} e^{-g(t)^{2} / 2} \phi(t) d t
\end{align*}
$$

where in the last step we have used the fact that $g(u)=\eta u$. Routine algebra and a change of variables establishes that

$$
\begin{align*}
\int_{u}^{\infty} e^{-g(t)^{2} / 2} \phi(t) d t & =e^{-u^{2} / 2} \int_{u}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(t-\rho u)^{2}}{2\left(1-\rho^{2}\right)}\right) d t \tag{1.10}\\
& =\sqrt{1-\rho^{2}} e^{-u^{2} / 2} \bar{\Phi}(\eta u)
\end{align*}
$$

Combining (1.9), (1.11), and inequality (1.6) yields the bound (1.7), as desired.

