
GAUSSIAN COMPARISON LEMMA

1. Gaussian Comparision Lemma

Lemma 1.1. Let G : Rn → R be a bounded, twice continuously differentiable function with
bounded derivatives

Gi(x) =
∂G(x)

∂xi
1 6 i 6 n and Gij =

∂G(x)

∂xi∂xj
1 6 i, j 6 n.

If X ∼ Nn(0,ΣX) and Y ∼ Nn(0,ΣY ) are normal random vectors then

EG(Y)− EG(X) =
1

2

n∑
i,j=1

∆ij

∫ 1

0
EGij(X

t) dt

where ∆ij = EYiYj−EXiXj = (ΣY − ΣX)ij and Xt ∼ Nn(0,Σt) with Σt := (1−t) ΣX+tΣY .

Proof: Assume without loss of generality that X and Y are independent. For each t ∈ [0, 1]
define the random vector

Xt = (1− t)1/2X + t1/2Y

and the associated function ϕ(t) = EG(Xt). Note that X0 = X, X1 = Y, and that Xt ∼
Nn(0,Σt), where Σt is defined as in the statement of the lemma. Thus

EG(Y)− EG(X) = ϕ(1)− ϕ(0) =

∫ 1

0
ϕ′(t) dt,

and it suffices to show that for each t ∈ (0, 1)

phipr0phipr0 (1.1) ϕ′(t) =
1

2

n∑
i,j=1

∆ij EGij(X
t).

To this end, fix t ∈ (0, 1) and note that Xt is distributed as Σ
1/2
t Z where Z ∼ N (0, I) is

a standard normal random vector with independent components. To simplify notation, let

At := Σ
1/2
t . It follows from our regularity assumptions and the chain rule that

ϕ′(t) =
d

dt
EG(At Z) = E

[
d

dt
G(At Z)

]
= E

[
n∑
i=1

Gi(At Z)
d

dt
(At Z)i

]

=

n∑
i,j=1

(A′t)ij E (Zj Gi(At Z)) ,phipr1 (1.2)

where A′t denotes the entry-by-entry derivative of the matrix At. Fix i, j for the moment and
define the function

Hij(s) := EGi(At Zs) where Zs := (Z1, · · · , Zj−1, s, Zj+1, · · · , Zn).
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2 GAUSSIAN COMPARISON LEMMA

It follows from a simple conditioning argument and Gaussian integration by parts that

GIPGIP (1.3) E [Zj Gi(AtZ)] = E [Zj Hij(Zj)] = EH ′ij(Zj).

By another application of the chain rule,

H ′ij(s) = E

[
d

ds
Gi(At Zs)

]
=

n∑
k=1

E

[
Gik(At Zs)

d

dt
(At Zs)k

]

=
n∑
k=1

(At)jk EGik(At Zs).

Thus, as Z1, . . . , Zn are independent,

EH ′ij(Zj) =
n∑
k=1

(At)jk EGik(At Z).

Combining this last equation with (1.2), we find that

ϕ′(t) =

n∑
i,k=1

EGik(At Z) ·
n∑
j=1

(A′t)ij(At)jk

=
n∑

i,k=1

EGik(X
t) · (A′tAt)ik.phipr2 (1.4)

Recalling that At = Σ
1/2
t , it is easy to see that (A2

t )
′
ik = (Σt)

′
ik = ∆ik. Furthermore, as At

and A′t are symmetric,

atsqatsq (1.5) (A2
t )
′ = A′tAt + AtA

′
t = A′tAt + (A′tAt)

T .

Fix 1 6 i < k 6 n. Continuity of the second partial derivatives ensures that Gik = Gki, and
therefore

EGik(X
t) · (A′tAt)ik + EGki(X

t) · (A′tAt)ki

= EGik(X
t)
(
(A′tAt)ik + (A′tAt)ki

)
= EGik(X

t) (A2
t )
′
ik = EGik(X

t) ∆ik,

where the penultimate equality follows from (1.5). A similar argument shows that (A′tAt)ii =
∆ii/2. Thus (1.1) follows from (1.2), and the proof is complete.
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1.1. Further Reading: Gaussian Tail Bounds. Let Φ̄(x) = 1 − Φ(x) where Φ(x) is the
cumulative distribution function of the standard Gaussian distribution. Recall that for x > 0,

Φ̄(x) 6
1√
2πx

e−x
2/2.eq:g1eq:g1 (1.6)

The proof of Theorem ?? requires an inequality for the probability that two correlated Gauss-
ian random variables each exceeds a common threshold.

lem:biv-norm-tail Lemma 1.2. Let (Z,Zρ) be jointly Gaussian random variables with mean 0, variance 1, and
correlation E(ZZρ) = ρ ∈ (−1, 1). Then for any u > 0,

eq:zzr0eq:zzr0 (1.7) P(Z > u,Zρ > u) 6
(1 + ρ)2

2πu2
√

1− ρ2
exp

(
−u2/(1 + ρ)

)
.

Proof of Lemma 1.2. Fix u > 0. When ρ > 0 the proof follows from known inequalities in
the literature (see R. Willink, Bounds on the bivariate normal distribution function, Comm.
Statist. Theory Methods 33 (2004), pp.2281-2297). Here we consider the case ρ < 0. Note

that we may write Zρ = ρZ +
√

1− ρ2Z ′, where Z ′ is a standard Gaussian random variable
independent of Z. By conditioning on the value of Z, it is easy to see that

eq:zzr1eq:zzr1 (1.8) P(Z > u,Zρ > u) =

∫ ∞
u

Φ̄ (g(t)) φ(t) dt where g(t) =
u− ρt√
1− ρ2

.

Now define

η =

√
1− ρ
1 + ρ

and h(x) = ex
2/2 Φ̄(x).

As h′(x) = x ex
2/2 Φ̄(x) − 1/

√
2π, inequality (1.6) implies that h(x) is decreasing for x > 0.

It follows from equation (1.8) that

P(Z > u,Zρ > u) =

∫ ∞
u

e−g(t)
2/2 h(g(t))φ(t) dteq:zzr2 (1.9)

6 h(g(u))

∫ ∞
u

e−g(t)
2/2 φ(t) dt

= h(ηu)

∫ ∞
u

e−g(t)
2/2 φ(t) dt,

where in the last step we have used the fact that g(u) = ηu. Routine algebra and a change of
variables establishes that∫ ∞

u
e−g(t)

2/2 φ(t) dt = e−u
2/2

∫ ∞
u

1√
2π

exp

(
− (t− ρu)2

2(1− ρ2)

)
dt(1.10)

=
√

1− ρ2 e−u2/2Φ̄(ηu).

Combining (1.9), (1.11), and inequality (1.6) yields the bound (1.7), as desired. �
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