STOR 655 Homework 13

1. Let (S, d) be a metric space, and let $N(S, \epsilon)$ be the covering number of S under the metric $d(.,$.$) at radius \epsilon$.
(a) What can you say about the limit of $N(S, \epsilon)$ as $\epsilon \rightarrow 0$? [Consider the case where S is finite and S is infinite.]
(b) Now let $S_{0} \subseteq S$ be a subset of S. By definition, an ϵ-cover of S_{0} contains of balls of radius ϵ centered at points in S_{0}, and $N\left(S_{0}, \epsilon\right)$ is the size of the smallest such cover. Consider instead general ϵ-covers of S_{0} that are centered at points in S, so that centers need not be in S_{0}. Let $\tilde{N}\left(S_{0}, \epsilon\right)$ be the smallest such general cover. Find a simple relationship between $N\left(S_{0}, \epsilon\right)$ and $\tilde{N}\left(S_{0}, \epsilon\right)$.
2. Show that if $Y \sim \mathcal{N}\left(0, \sigma^{2}\right)$ then $\mathbb{E}\{|Y| I(|Y|>c)\} \leq \sigma \exp \left\{-c^{2} / 2 \sigma^{2}\right\}$
3. Show that $x y \leq 3 x^{2}+y^{3} / 3$ for $x, y \geq 0$.
4. Show that if $d \geq 3$ then $\int_{\mathbb{R}^{d}}\|u\|^{-2} e^{-\|u\|^{2}}=c \int_{0}^{\infty} e^{-r^{2}} r^{d-3} d r<\infty$.
5. Let X_{1}, \ldots, X_{n} be independent random variables with $X_{i} \sim \mathcal{N}_{n}\left(\theta_{i}, 1\right)$. Suppose that we wish to simultaneously test the hypotheses $\mathrm{H}_{0, i}: \theta_{i}=0$ vs. $\mathrm{H}_{1, i}: \theta_{i} \neq 0$ for $1 \leq i \leq n$. Consider a simple threshold test in which we reject $\mathrm{H}_{0, i}$ if $\left|X_{i}\right|>\tau$ and accept $\mathrm{H}_{0, i}$ otherwise. Using the asymptotic results on Gaussian extreme values, find a value of the threshold τ, depending on n, so that the family-wise error rate of the test under the global null $\theta_{1}=\cdots=\theta_{n}=0$ is (approximately) controlled at 5%.
6. Recall that the L_{p}-norm of a random variable X is defined by $\|X\|_{p}=\left(\mathbb{E}|X|^{p}\right)^{1 / p}$. Establish Lyapunov's inequality: If $p \leq q$ then $\|X\|_{p} \leq\|X\|_{q}$. [Hint: Apply Hölder's inequality with an appropriate choice of conjugate exponents to $|X|^{p} \cdot 1$.]
7. Show that $\ln (1-x) \leq-x-x^{2} / 2$ for $0 \leq x<1$
