STOR 655 Homework 13

1. Let (S, d) be a metric space, and let $N(S, \epsilon)$ be the covering number of S under the metric d(.,.) at radius ϵ .

- (a) What can you say about the limit of $N(S, \epsilon)$ as $\epsilon \to 0$? [Consider the case where S is finite and S is infinite.]
- (b) Now let S₀ ⊆ S be a subset of S. By definition, an ε-cover of S₀ contains of balls of radius ε centered at points in S₀, and N(S₀, ε) is the size of the smallest such cover. Consider instead general ε-covers of S₀ that are centered at points in S, so that centers need not be in S₀. Let Ñ(S₀, ε) be the smallest such general cover. Find a simple relationship between N(S₀, ε) and Ñ(S₀, ε).
- 2. Show that if $Y \sim \mathcal{N}(0, \sigma^2)$ then $\mathbb{E}\{|Y|I(|Y| > c)\} \le \sigma \exp\{-c^2/2\sigma^2\}$
- 3. Show that $xy \leq 3x^2 + y^3/3$ for $x, y \geq 0$.
- 4. Show that if $d \ge 3$ then $\int_{\mathbb{R}^d} ||u||^{-2} e^{-||u||^2} = c \int_0^\infty e^{-r^2} r^{d-3} dr < \infty$.

5. Let X_1, \ldots, X_n be independent random variables with $X_i \sim \mathcal{N}_n(\theta_i, 1)$. Suppose that we wish to simultaneously test the hypotheses $H_{0,i}: \theta_i = 0$ vs. $H_{1,i}: \theta_i \neq 0$ for $1 \leq i \leq n$. Consider a simple threshold test in which we reject $H_{0,i}$ if $|X_i| > \tau$ and accept $H_{0,i}$ otherwise. Using the asymptotic results on Gaussian extreme values, find a value of the threshold τ , depending on n, so that the family-wise error rate of the test under the global null $\theta_1 = \cdots = \theta_n = 0$ is (approximately) controlled at 5%.

6. Recall that the L_p -norm of a random variable X is defined by $||X||_p = (\mathbb{E}|X|^p)^{1/p}$. Establish Lyapunov's inequality: If $p \leq q$ then $||X||_p \leq ||X||_q$. [Hint: Apply Hölder's inequality with an appropriate choice of conjugate exponents to $|X|^p \cdot 1$.]

7. Show that $\ln(1-x) \leq -x - x^2/2$ for $0 \leq x < 1$