STOR 655 Homework 11

1. Recall that the convex hull of a set $A \subseteq \mathbb{R}^{d}$, denoted $\operatorname{conv}(A)$, is the intersection of all convex sets C containing A. Show that $\operatorname{conv}(A)$ is equal to the set of all convex combinations $\sum_{i=1}^{k} \alpha_{i} x_{i}$, where $k \geq 1$ is finite, $x_{1}, \ldots, x_{k} \in A$, and the coefficients α_{i} are non-negative and sum to one.
2. Identify the extreme points (if any) of the following convex sets.
a. The hyperplane $H=\left\{x: x^{t} u=b\right\}$
b. The halfspace $H_{+}=\left\{x: x^{t} u>b\right\}$
c. The closed ball $\bar{B}\left(x_{0}, r\right)=\left\{x:\left\|x-x_{0}\right\| \leq r\right\}$
3. Let $f: C \rightarrow \mathbb{R}$ be a strictly convex function defined on a convex set $C \subseteq \mathbb{R}^{n}$. Show that $\operatorname{argmax}_{x \in C} f(x)$ is contained in the set of extreme points of C.
4. (Set sums and scaler products) Given sets $A, B \subseteq \mathbb{R}^{d}$ and a constant $\alpha \in \mathbb{R}$ define the set sum and set scaler product as follows:

$$
A+B=\{x+y: x \in A \text { and } y \in B\} \quad \alpha A=\{\alpha x: x \in A\}
$$

a. (Optional) Show that if A is open then $A+B$ is open regardless of whether B is open.
b. Show that if A and B are convex, then so is $A+B$.
c. If A is convex is $A+B$ necessarily convex?
d. Show by example that, in general, $2 A \neq A+A$.
d. Show that if A is convex then $\alpha A+\beta A=(\alpha+\beta) A$ for all $\alpha, \beta \geq 0$.
5. Let f be a convex function defined on a convex set C. Show that for each $\alpha \in \mathbb{R}$ the level set $L(\alpha)=\{x: f(x) \leq \alpha\}$ is convex.
6. Let $X \in \mathbb{R}$ be an integrable random variable with $\operatorname{CDF} F(x)$, and for $0<p<1$ let $h_{p}(x, \theta)=p(x-\theta)_{+}+(1-p)(\theta-x)_{+}$.
(a) Show that for each fixed p and $x, h_{p}(x, \theta)$ is a convex function of θ.
(b) Show that, under reasonable assumptions on F, the quantity $\mathbb{E} h_{p}(X, \theta)$ is minimized by the p th quantile $F^{-1}(p)$ of X. Clearly state any assumptions that you make.
(c) What does the result of part (b) tell you in the special case $p=1 / 2$.
7. Let $A(t)=\left\{A_{i, j}(t): 1 \leq i, j \leq n\right\}$ be a matrix whose entries are differentiable functions of a real number t. Define the entry-wise derivative

$$
A^{\prime}(t)=\left\{A_{i, j}^{\prime}(t): 1 \leq i, j \leq n\right\}
$$

(a) Show that the entry-wise derivate obeys the usual product rule, that is,

$$
[A(t) B(t)]^{\prime}=A(t) B^{\prime}(t)+A^{\prime}(t) B(t)
$$

(b) Suppose that for each t the matrix $A(t)$ is symmetric and non-negative definite. Then there exists a matrix function $A^{1 / 2}(t)$ such that $A(t)=A^{1 / 2}(t) A^{1 / 2}(t)$. Use part (a) to show that $A^{\prime}(t)=2 A^{1 / 2}(t)\left(A^{1 / 2}(t)\right)^{\prime}$.
8. Show that $\|x\|_{0}=\lim _{p \searrow 0}\|x\|_{p}$ and that $\|x\|_{\infty}=\lim _{p \nmid \infty}\|x\|_{p}$.
9. Show that if $u, v \in \mathbb{R}^{n}$ are orthogonal then $\|u\|_{2}+\|v\|_{2} \leq \sqrt{2}\|u+v\|_{2}$.
10. Establish the following facts about the Gaussian mean width $w(K)$ of a bounded set $K \subseteq \mathbb{R}^{n}$.
(a) If $K_{1} \subseteq K_{2}$ then $w\left(K_{1}\right) \leq w\left(K_{2}\right)$
(b) $w(K) \geq 0$
(c) If $A \in \mathbb{R}^{n \times n}$ is orthogonal then $w(A K)=w(A)$
(d) For each $u \in \mathbb{R}^{n}, w(K+u)=w(K)$
(e) $w(K)=w(\operatorname{conv}(K))$
(f) $\sqrt{2 / \pi} \operatorname{diam}(K) \leq w(K) \leq n^{1 / 2} \operatorname{diam}(K)$
(g) $w(K) \leq 2 \mathbb{E} \sup _{x \in K}\langle x, V\rangle$ with $V \sim \mathcal{N}_{n}(0, I)$

