STOR 655 Homework 9

1. Let $H_{i}\left(x_{1}^{i}\right):=\mathbb{E}\left[f\left(X_{1}^{n}\right) \mid X_{1}^{i}=x_{1}^{i}\right]$ be defined as in the proof of McDiarmid's inequality. Show carefully that

$$
\sup _{u, u^{\prime}}\left[H_{i}\left(x_{1}^{i-1}, u\right)-H_{i}\left(x_{1}^{i-1}, u^{\prime}\right)\right],
$$

and note how your argument depends on the independence of X_{1}, \ldots, X_{n}.
2. Let $X_{1}, \ldots, X_{n} \in \mathcal{X}$ be i.i.d. and let \mathcal{G} be a family of function $g: \mathcal{X} \rightarrow[-c, c]$. Define

$$
f\left(x_{1}^{n}\right)=\sup _{g \in \mathcal{G}}\left|n^{-1} \sum_{i=1}^{n} g\left(x_{i}\right)-\mathbb{E} g(X)\right|
$$

Find the difference coefficients c_{1}, \ldots, c_{n} of f, and use these to establish concentration bounds for the random variable $f\left(X_{1}^{n}\right)$.
3. Let $X \sim \mathcal{N}_{n}(0, I)$ and $Y \sim \mathcal{N}_{n}(0, I)$ be independent multinormal random variables. For $0 \leq \theta \leq \pi / 2$ define random vectors

$$
\begin{aligned}
& X(\theta)=X \sin \theta+Y \cos \theta \\
& \dot{X}(\theta)=X \cos \theta-Y \sin \theta
\end{aligned}
$$

(a) Show that for each $\theta, X(\theta)$ and $\dot{X}(\theta)$ have the same distribution as X.
(b) Show that for each $\theta, X(\theta)$ and $\dot{X}(\theta)$ are independent.
4. Concentration for norms of Gaussian random vectors. Let $Y \sim \mathcal{N}_{d}(0, \Sigma)$ and consider the random variable $U=\|Y\|$.
(a) Show that $U=F(X)$ where $X \sim \mathcal{N}_{d}(0, I)$ and $F(x)=\left\|\Sigma^{1 / 2} x\right\|$
(b) Show that F Lipschitz with constant

$$
L \leq \sup _{u \in \mathbb{R}^{d}} \frac{\left\|\Sigma^{1 / 2} u\right\|}{\|u\|}
$$

(c) Find a bound on the right hand side of the inequality above involving the largest eigenvalue of Σ.
(d) Find a concentration inequality for U.
5. Let $X_{1}, \ldots, X_{n} \in \mathbb{R}^{d}$ be random vectors such that $\left\|X_{i}\right\| \leq c_{i} / 2$ with probability one, where $\|u\|=\left(u^{t} u\right)^{1 / 2}$ is the ordinary Euclidean norm. Let $\alpha=(1 / 4) \sum_{i=1}^{n} c_{i}^{2}$.
(a) Show that $\mathbb{E}\left\|\sum_{i=1}^{n} X_{i}\right\| \leq \sqrt{\alpha}$.
(b) Use the bounded difference inequality and the inequality in part (a) to show that for all $t \geq \alpha$

$$
P\left(\left\|\sum_{i=1}^{n} X_{i}\right\|>t\right) \leq \exp \left\{\frac{(t-\sqrt{\alpha})^{2}}{2 \alpha}\right\}
$$

6. Let a_{1}, \ldots, a_{n} be real numbers. Show that $n^{-1} \sum_{k=1}^{n}\left|a_{k}\right| \leq\left(n^{-1} \sum_{k=1}^{n} a_{k}^{2}\right)^{1 / 2}$.
7. Let $\Gamma(x)$ be the standard Gamma function, defined for $x>0$. Show that if $Z \sim \mathcal{N}(0,1)$ then for each $p \geq 1$

$$
\mathbb{E}|Z|^{p}=\frac{2^{p / 2}}{\sqrt{\pi}} \Gamma((1+p) / 2)
$$

Deduce from this fact and Stirling's approximation that $\|Z\|_{p}:=\left(\mathbb{E}|Z|^{p}\right)^{1 / p}=O\left(p^{1 / 2}\right)$.
8. Use Jensen's inequality to establish the Arithmetic-Geometric mean inequality: if a_{1}, \ldots, a_{n} are positive constants, then

$$
\frac{1}{n} \sum_{i=1}^{n} a_{i} \geq\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n}
$$

Hint: Logs will help.

