STOR 655 Homework 9

1. Let $H_i(x_1^i) := \mathbb{E}[f(X_1^n) | X_1^i = x_1^i]$ be defined as in the proof of McDiarmid's inequality. Show carefully that

$$\sup_{u,u'} [H_i(x_1^{i-1}, u) - H_i(x_1^{i-1}, u')],$$

and note how your argument depends on the independence of X_1, \ldots, X_n .

2. Let $X_1, \ldots, X_n \in \mathcal{X}$ be i.i.d. and let \mathcal{G} be a family of function $g : \mathcal{X} \to [-c, c]$. Define

$$f(x_1^n) = \sup_{g \in \mathcal{G}} \left| n^{-1} \sum_{i=1}^n g(x_i) - \mathbb{E}g(X) \right|$$

Find the difference coefficients c_1, \ldots, c_n of f, and use these to establish concentration bounds for the random variable $f(X_1^n)$.

3. Let $X \sim \mathcal{N}_n(0, I)$ and $Y \sim \mathcal{N}_n(0, I)$ be independent multinormal random variables. For $0 \le \theta \le \pi/2$ define random vectors

$$X(\theta) = X \sin \theta + Y \cos \theta$$
$$\dot{X}(\theta) = X \cos \theta - Y \sin \theta$$

- (a) Show that for each θ , $X(\theta)$ and $\dot{X}(\theta)$ have the same distribution as X.
- (b) Show that for each θ , $X(\theta)$ and $\dot{X}(\theta)$ are independent.

4. Concentration for norms of Gaussian random vectors. Let $Y \sim \mathcal{N}_d(0, \Sigma)$ and consider the random variable U = ||Y||.

- (a) Show that U = F(X) where $X \sim \mathcal{N}_d(0, I)$ and $F(x) = ||\Sigma^{1/2}x||$
- (b) Show that F Lipschitz with constant

$$L \leq \sup_{u \in \mathbb{R}^d} \frac{||\Sigma^{1/2}u||}{||u||}$$

- (c) Find a bound on the right hand side of the inequality above involving the largest eigenvalue of Σ .
- (d) Find a concentration inequality for U.

5. Let $X_1, \ldots, X_n \in \mathbb{R}^d$ be random vectors such that $||X_i|| \leq c_i/2$ with probability one, where $||u|| = (u^t u)^{1/2}$ is the ordinary Euclidean norm. Let $\alpha = (1/4) \sum_{i=1}^n c_i^2$.

- (a) Show that $\mathbb{E} || \sum_{i=1}^{n} X_i || \le \sqrt{\alpha}$.
- (b) Use the bounded difference inequality and the inequality in part (a) to show that for all $t \ge \alpha$

$$P\left(\left|\left|\sum_{i=1}^{n} X_{i}\right|\right| > t\right) \leq \exp\left\{\frac{(t - \sqrt{\alpha})^{2}}{2\alpha}\right\}$$

6. Let a_1, \ldots, a_n be real numbers. Show that $n^{-1} \sum_{k=1}^n |a_k| \le (n^{-1} \sum_{k=1}^n a_k^2)^{1/2}$.

7. Let $\Gamma(x)$ be the standard Gamma function, defined for x > 0. Show that if $Z \sim \mathcal{N}(0, 1)$ then for each $p \ge 1$

$$\mathbb{E}|Z|^p = \frac{2^{p/2}}{\sqrt{\pi}}\Gamma((1+p)/2)$$

Deduce from this fact and Stirling's approximation that $||Z||_p := (\mathbb{E}|Z|^p)^{1/p} = O(p^{1/2}).$

8. Use Jensen's inequality to establish the Arithmetic-Geometric mean inequality: if a_1, \ldots, a_n are positive constants, then

$$\frac{1}{n}\sum_{i=1}^n a_i \geq \left(\prod_{i=1}^n a_i\right)^{1/n}.$$

Hint: Logs will help.