## STOR 655 Homework 10

1. Let $X_{1}, \ldots, X_{n}$ be random variables with moment generating functions $\varphi_{X_{i}}(s) \leq \varphi(s)$ for each $s \geq 0$.
(a) Using the argument in class for Gaussian random variables, show that

$$
\mathbb{E} \max \left(X_{1}, \ldots, X_{n}\right) \leq \inf _{s>0} \frac{\log n+\log \varphi(s)}{s}
$$

Suppose now that $U_{1}, \ldots, U_{n}$ are $\operatorname{Gamma}(\alpha, \beta)$ random variables.
(b) Show that the moment generating function of $U_{i}$ is $\varphi(s)=(1-s \beta)^{-\alpha}$.
(c) Using the bound from part (a) and an appropriate choice of $s$, which can be found by inspection, show that

$$
\mathbb{E} \max \left(U_{1}, \ldots, U_{n}\right) \leq \frac{2 \beta \log n}{1-n^{-1 / \alpha}}
$$

2. Let $X_{1}, X_{2}, \ldots, X$ be i.i.d. random variables and let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$. Show that $M_{n}$ converges with probability one to the essential supremum $\|X\|_{\infty}$ of $X$.
3. Let $X_{1}, \ldots, X_{n}$ be independent standard normal random variables. Here we identify upper and lower bounds for the expectation of $K_{n}:=\max _{1 \leq i \leq n}\left|X_{i}\right|$.
(a) Using the bound from class and the fact that $K_{n}=\max _{i}\left(X_{i},-X_{i}\right)$ show that $\mathbb{E} K_{n} \leq$ $(2 \log 2 n)^{1 / 2}$.
(b) Let $\Phi()$ be the CDF of the standard normal. Show that

$$
K_{n}=\Phi^{-1}\left(\frac{1}{2}+\frac{1}{2} \max _{1 \leq i \leq n} V_{i}\right)
$$

where $V_{1}, \ldots, V_{n}$ are independent $\operatorname{Uniform}(0,1)$ random variables.
(c) Show that $\Phi^{-1}(u)$ is convex on $[1 / 2,1)$. Apply Jensen's inequality to the expression in $(\mathrm{b})$ to obtain the bound $\mathbb{E} K_{n} \geq \Phi^{-1}(1-1 /(2 n+2))$.
(d) Show that $\Phi^{-1}\left(1-t^{-1}\right) /(2 \log t)^{1 / 2} \rightarrow 1$ as $t \rightarrow \infty$.
(e) Conclude from (a), (c), and (d) that $\mathbb{E} K_{n} /(2 \log n)^{1 / 2} \rightarrow 1$ as $n \rightarrow \infty$.
4. Extreme value theory for the Gaussian. Let $a_{n}$ and $b_{n}$ be the extreme value scaling and centering constants for the maximum $M_{n}$ of $n$ independent standard Gaussian random variables.
(a) Fix $x \in \mathbb{R}$ and let $x_{n}=x / a_{n}+b_{n}$. Show that $n \phi\left(x_{n}\right) / x_{n} \rightarrow e^{-x}$ as $n$ tends to infinity. [In your calculations, identify and pay careful attention to the leading order terms.]
(b) Using the result of part (a) and the standard Gaussian tail bound from an earlier homework, show that $n\left(1-\Phi\left(x_{n}\right)\right) \rightarrow e^{-x}$.
(c) Use part (b) and the lemma from lecture to show that as $n$ tends to infinity

$$
\mathbb{P}\left(a_{n}\left(M_{n}-b_{n}\right) \leq x\right) \rightarrow G(x)=e^{-e^{-x}}
$$

(d) Show that $G(x)$ is the CDF of $-\log V$ where $V \sim \operatorname{Exp}(1)$.
5. Let $U_{1}, \ldots, U_{n}$ be independent Uniform $(0, \theta)$ random variables. Find $\mathbb{E}\left[\max _{1 \leq j \leq n} U_{j}\right]$.
6. Let $\left\{C_{\lambda}: \lambda \in \Lambda\right\}$ be convex sets. Show that the intersection $C=\cap_{\lambda \in \Lambda} C_{\lambda}$ is convex.
7. Show that the following subsets of $\mathbb{R}^{d}$ are convex.
a. The emptyset
b. The hyperplane $H=\left\{x: x^{t} u=b\right\}$
c. The halfspace $H_{+}=\left\{x: x^{t} u>b\right\}$
d. The Ball $B\left(x_{0}, r\right)=\left\{x:\left\|x-x_{0}\right\| \leq r\right\}$
8. Show that if $f_{1}, \ldots, f_{k}$ are convex functions defined on the same set, and $w_{1}, \ldots, w_{k}$ are non-negative, then $f=\sum_{j=1}^{k} w_{j} f_{j}$ is convex.
9. Let $\left\{f_{\lambda}: \lambda \in \Lambda\right\}$ be convex functions defined on a common set $C$. Show that the supremum $f=\sup _{\lambda \in \Lambda} f_{\lambda}$ is convex.
10. Let $f$ be a convex function on an open interval $I \subseteq \mathbb{R}$ and let $a<b<c$ be in $I$.
(a) Show that

$$
\frac{f(b)-f(a)}{b-a} \leq \frac{f(c)-f(a)}{c-a} \leq \frac{f(c)-f(b)}{c-b}
$$

(Hint: express $b$ as a convex combination of $a$ and $c$ and then apply the definition of convexity.)
(b) Draw a picture illustrating this result. Interpret the result in terms of the slopes of chords of the function $f$.

Now let $u<v$ be points in $I$. For each $x \in I$ let $g(x)$ be the height of the line determined by $(u, f(u))$ and $(v, f(v))$.
(c) Write down a formal expression for $g(x)$ as a function of $x$.
(d) Use part (a) applied to appropriate points $a, b, c$ to show that $f(x) \leq g(x)$ for $u \leq$ $x \leq v$.
(e) Use part (a) applied to appropriate points $a, b, c$ to show that $f(x) \geq g(x)$ for $x<u$ and $x>v$.

