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Abstract

We establish an asymptotic connection between vanishing r’th power dis-

tortion and shrinking cell diameters for vector quantizers with convex cells.
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1 Introduction

The study of high rate vector quantization is concerned with the performance of

quantizers having large codebooks. One seeks bounds (or precise estimates) for the

asymptotic distortion of a sequence vector quantizers in terms of codebook size, vector

dimension, and the nature of the selected distortion measure. Gersho [4], Yamada

et al. [14], and others have given heuristic derivations of formulae governing the

distortion of vector quantizers with large codebooks. They assume that the underlying

distribution has a smooth density, and that the cell diameters of the n’th quantizer

tend to zero as n tends to infinity. The latter condition, stipulating shrinking cells,

is the subject of this paper.

Recently, several authors [11, 5, 13, 12, 6, 10] have proposed using vector quan-

tizers as the basis for multivariate histogram classification and regression schemes

in higher dimensions. Verification of shrinking cell conditions is typically the key to

establishing the consistency of such schemes (cf. [6, 10]). Although they do not figure

explicitly in the rigorous derivation [15, 16, 2, 3] of bounds concerning the distortion

of optimal nearest-neighbor quantizers, shrinking cell conditions do appear in more

general settings. Na and Neuhoff [7] require shrinking cells in their derivation of Ben-

nett’s integral for vector quantizers having convergent point densities and convergent

inertial profiles. The same condition appears in recent work [8] on the asymptotic

distribution of errors for high-rate vector quantizers.

The r’th power distortion of a quantizer is an average quantity, while its cell diam-

eters measure its worst-case local behavior. In many cases, the connection between

quantizer design (which is typically distortion-based) and cell size is not readily ap-

parent. For example, verifying a shrinking cell condition can be problematic when the

quantizers under study are designed from finite data sets using iterative or recursive

methods that seek to reduce empirical distortion, or when they are defined in terms

of secondary quantities such as point densities and inertial profiles.

In Theorem 1 below we establish an asymptotic connection between vanishing r’th

power distortion and shrinking cell diameters for quantizers with convex cells. As a

consequence, a number of shrinking cell conditions may be easily verified by showing

that the quantizers in question have distortion tending to zero. Theorem 1 also plays
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an important role in the asymptotic analysis [9] of a common greedy growing scheme

for tree-structured vector quantizers.

2 Results

A vector quantizer is a map Q : IRd → C, where IRd denotes d-dimensional Euclidean

space, and C = {c1, . . . , cm} ⊆ IRd is a finite set of representative vectors known as

the codebook of Q. Let P be a fixed probability distribution on IRd. For each r > 0,

the r’th power distortion of Q with respect to a random vector X ∼ P is given by

Dr(Q) = E‖Q(X) − X‖r =
∫

‖Q(x) − x‖rdP (x) , (1)

where ‖·‖ is the ordinary Euclidean norm on IRd. A sequence of quantizers Q1, Q2, . . .

has vanishing r’th power distortion if Dr(Qn) → 0 as n → ∞.

Every quantizer Q is associated with a finite partition {A1, . . . , Am} of IRd, where

Ai = {x : Q(x) = ci} is the cell contains those vectors assigned to the i’th codeword.

For each vector x the cell of Q containing x is defined by

Q[x] = {u : Q(u) = Q(x)} .

The diameter of a set U ⊆ IRd is the greatest distance between any two points of the

set, namely

diam(U) = sup
u,v∈U

‖u − v‖ .

A sequence of quantizers Q1, Q2, . . . will be said to have shrinking cells if for every

ǫ > 0

P{x : diam(Qn[x]) > ǫ} → 0 . (2)

Equivalently, diam(Qn[X]) → 0 in probability when X ∼ P . Note that diam(Qn[x])

accounts for all the points in the cell, not just those that lie in the support set of P .

Let Q1, Q2, . . . be vector quantizers such that (i) each cell Ai of Qn contains its

corresponding codeword ci, and (ii) ci is no worse a representative than the zero vector

in the sense that
∫

Ai

‖x − ci‖
rdP ≤

∫

Ai

‖x‖rdP .
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When r = 2 both conditions are satisfied if Qn has convex cells and the representative

of each cell is its centroid with respect to P . Under these conditions it is readily

verified that shrinking cells imply vanishing distortion.

Proposition 1 Let Q1, Q2, . . . satisfy conditions (i) and (ii). If
∫

‖x‖rdP < ∞ and

P{x : diam(Qn[x]) > ǫ} → 0 for every ǫ > 0, then Dr(Qn) → 0. 2

Our principle result, stated in Theorem 1 below, is a converse to Proposition 1

that holds if the cells of each quantizer Qn are convex and P is absolutely continu-

ous with respect to Lebesgue measure. Theorem 1 applies to nearest-neighbor and

tree-structured vector quantizers, each of which have convex cells. The proof of the

theorem is given in the next section.

Theorem 1 Let P be an absolutely continuous distribution on IRd and let Q1, Q2, . . .

be vector quantizers having convex cells. If for some r > 0 the distortions Dr(Qn) →

0, then

P{x : diam(Qn[x]) > ǫ} → 0

for every ǫ > 0.

Remark: If P fails to be absolutely continuous, then the conclusion of Theorem 1

may not be valid. Nevertheless, the theorem applies to the absolutely continuous part

of an arbitrary distribution P .

Remark: Theorem 1 shows that, for quantizers with convex cells, the shrinking cell

condition used in [7] is actually implied by their other assumptions.

3 Proof of Theorem 1

The proof of Theorem 1 relies on the following lemma, which is a simple consequence

of a geometrical result of Alexander [1]. The lemma provides a connection between

the diameter of a cell, and the Lebesgue measure of those points in the cell lying

outside a ball with fixed radius but arbitrary center. Let λ denote d-dimensional

Lebesgue measure.
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Lemma A Fix b > 0 and let U be the collection of convex sets U ⊆ IRd such that U

has non-empty interior and diam(U) ≥ b. For every γ > 0 there is a number δ > 0

such that
λ(U ∩ B(x, δ))

λ(U)
≤ γ

for every U ∈ U and every x ∈ IRd. 2

Proof of Theorem 1: It is easiest to establish the contrapositive of the claim: if

there exist numbers a, ǫ > 0 such that

lim sup
n→∞

P{x : diam(Qn[x]) > a} > ǫ , (3)

then lim supn Dr(Qn) > 0 for every r > 0. Application of Lemma A requires an

inequality analogous to (3) in which diameters are computed within a bounded convex

set.

Let C be a bounded rectangle in IRd so large that P (Cc) < ǫ/6. Our immediate

goal is to establish the inequality (6) by contradiction. To this end, suppose that for

every b > 0,

lim sup
n→∞

P{x : diam(Qn[x] ∩ C) > b} ≤ ǫ/3 . (4)

Fix n for the moment and consider the quantizer Qn. As each cell Qn[x] is connected,

P{x : diam(Qn[x]) > a}

≤ P{x : diam(Qn[x] ∩ Cc) > a/2 } + P{x : diam(Qn[x] ∩ C) > a/2}

≤ P (Cc) + P{x ∈ C : diam(Qn[x] ∩ Cc) > a/2 } +

P{x : diam(Qn[x] ∩ C) > a/2 } . (5)

If x ∈ C is such that diam(Qn[x]∩Cc) > a/2 then Qn[x]∩Cc 6= ∅, and consequently

inf
u∈Cc

‖x − u‖ ≤ diam(Qn[x] ∩ C) .

For each γ > 0 let Cγ be the set of points in C that are close to its boundary:

Cγ =
{

x ∈ C : inf
u∈Cc

‖x − u‖ < γ
}

.

Accounting separately for vectors x ∈ Cγ and x ∈ Cc
γ it is evident that for each γ > 0,

P{x ∈ C : diam(Qn[x] ∩ Cc) > a/2} ≤ P{x : diam(Qn[x] ∩ C) > γ} + P (Cγ) .
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Combining this last inequality with (4) and (5), it follows that

lim sup
n→∞

P{x : diam(Qn[x]) > a} ≤
ǫ

3
+

ǫ

3
+

ǫ

6
+ P (Cγ)

=
5ǫ

6
+ P (Cγ) .

Since P is absolutely continuous and C is bounded and convex, P (Cγ) → 0 as γ → 0.

When γ is sufficiently small the inequality above contradicts (3), and we conclude

that for some b′ > 0,

lim sup
n→∞

P{x : diam(Qn[x] ∩ C) > b′} ≥ ǫ/3 (6)

as desired.

Let ǫ > 0 and the bounded rectangle C be as above. Since P is absolutely

continuous, there exists a number η > 0 such that for every measurable A ⊆ IRd,

λ(A) ≤ η implies P (A) ≤ ǫ/12. By Lemma A there is a number δ > 0 so small that

for every vector x and every convex set U ⊆ IRd with diam(U) > b′,

λ(U ∩ B(x, δ))

λ(U)
≤

η

λ(C)
. (7)

Use of (7) will show that P{x : ‖x − Qn(x)‖ ≥ δ} is bounded away from zero when

n is sufficiently large.

Fix n and let {c1, . . . , cN} be the codebook of Qn. Let Uj = {x : Qn(x) = cj} be

the cell corresponding to the representative vector cj, and let Zn = {j : diam(Uj∩C) >

b′} contain the indices of ‘large’ cells. Define

Vn =
⋃

j∈Zn

Uj = {x : diam(Qn[x] ∩ C) > b′}

to be the union of the large cells. Consider those vectors x ∈ Vn that lie close to their

representatives. By an obvious upper bound,

P{x ∈ Vn : ‖x − Qn(x)‖ < δ} ≤ P (Cc) + P{x ∈ Vn ∩ C : ‖x − Qn(x)‖ < δ} .

Summing over the constituent cells of Vn and applying the bound (7) to each cell

shows that

λ{x ∈ Vn ∩ C : ‖x − Qn(x)‖ < δ} =
∑

j∈Zn

λ(Uj ∩ C ∩ B(cj, δ))

≤
∑

j∈Zn

η
λ(Uj ∩ C)

λ(C)

≤ η .
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The choice of C and the constant η insures that

P{x ∈ Vn : ‖x − Qn(x)‖ < δ} ≤ ǫ/6 + ǫ/12 = ǫ/4 ,

and consequently

P{x : ‖x − Qn(x)‖ ≥ δ} ≥ P{x ∈ Vn : ‖x − Qn(x)‖ ≥ δ}

= P (Vn) − P{x ∈ Vn : ‖x − Qn(x)‖ < δ}

≥ P (Vn) − ǫ/4 .

By definition of Vn and the relation (6),

lim sup
n→∞

P{x : ‖x − Qn(x)‖ ≥ δ} ≥ ǫ/3 − ǫ/4 = ǫ/12 ,

and therefore lim supn→∞
Dr(Qn) > 0 for every r > 0. 2
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