
Recursive Partitioning to Reduce Distortion

Andrew B. Nobel ∗

November 1, 1996

Abstract

Adaptive partitioning of a multidimensional feature space plays a fundamental role in

the design of data-compression schemes. Most partition-based design methods operate

in an iterative fashion, seeking to reduce distortion at each stage of their operation by

implementing a linear split of a selected cell. The operation and eventual outcome of

such methods is easily described in terms of binary tree-structured vector quantizers.

This paper considers a class of simple growing procedures for tree-structured vector

quantizers. Of primary interest is the asymptotic distortion of quantizers produced by

the unsupervised implementation of the procedures. It is shown that application of

the procedures to a convergent sequence of distributions with a suitable limit yields

quantizers whose distortion tends to zero. Analogous results are established for tree-

structured vector quantizers produced from stationary ergodic training data.

The analysis is applicable to procedures employing both axis-parallel and oblique

splitting, and a variety of distortion measures. The results of the paper apply directly

to unsupervised procedures that may be efficiently implemented on a digital computer.
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1 Introduction

Adaptive partitioning of a multidimensional feature space plays a fundamental role in the

empirical design of data compression schemes. Most partition-based design schemes operate

in an iterative fashion, seeking to reduce distortion at each stage of their operation through

selective refinement of a given partition. At each iteration, a single cell of the current

partition is divided into two new cells by a halfspace. Both the selection of the cell and the

choice of the splitting halfspace are based on the achievable reduction of average distortion

with respect to a given distribution.

The operation and eventual output of such recursive partitioning schemes can be de-

scribed in terms of binary tree-structured vector quantizers (TSVQs). Tree-structured vec-

tor quantizers provide a computationally efficient means of compressing multidimensional

data arising in a variety of applications, including medical imaging and speech recognition.

When candidate splits are selected using the two-means algorithm, recursive partitioning

methods are formally equivalent to greedy growing algorithms [17, 6, 30, 31, 2]. Though

greedy growing is the basic tool by which tree-structured vector quantizers are produced

from finite data sets, there has been little analysis to support the unsupervised use of such

algorithms, or to examine their behavior on large training sets.

In this paper a class of simple recursive partitioning procedures for producing tree-

structured vector quantizers is studied. Of primary interest is the asymptotic distortion of

quantizers produced by the unsupervised implementation of these procedures.

1.1 Overview

A tree-structured partition is described by a binary tree and a function that assigns a vector

to each node of the tree. Each leaf of the tree corresponds to a cell of the partition. A

tree-structured vector quantizer is defined by assigning a vector representative to each leaf

of the tree. The recursive growing procedures studied here produce tree-structured vector

quantizers, and their associated partitions, one node at a time, in a stepwise optimal fashion.

The input to the growing procedure consists of a distribution P on IRd, and an integer

k indicating the number of iterations to perform. At each iteration the procedure carries

out the following steps:

a. It produces a good candidate split of each leaf/cell using a local splitting rule;

b. It selects the leaf/cell having the best candidate split;
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c. It implements that split by adding two children to the selected leaf, and assigning a

suitable vector to each child.

In steps (a) and (b) the assessment of ‘goodness’ is based on the reduction in distortion

that is achievable by a given split. In practice P is the empirical distribution of a finite

training set.

Implementation of the recursive growing procedure depends on the distribution P , the

iteration number k, and the local splitting rule, each of which is fixed at the outset of its

operation. The procedure is adaptive, in that it does not require any prior knowledge of its

input distribution: P need not be drawn from a parametric family, nor is it necessary that P

satisfy regularity or smoothness conditions. Like other adaptive methods (e.g. classification

and regression trees [3]), this flexibility makes the output of the procedure sensitive to its

input: changing a single element of a training sequence may result in a markedly different

tree.

The sensitivity of adaptive methods makes their analysis problematic. For the pro-

cedures considered here, this is compounded by the fact that what happens at a given

iteration of the procedure depends critically on what took place at each previous iteration.

Analysis of adaptive procedures is commonly undertaken under some form of supervision.

Supervision involves external oversight of the procedure, usually through post-hoc modifi-

cations, which insure that it behaves in a desired fashion. Under supervision a procedure

will not always act in accordance with its input and applicable optimization criteria: it

may be forced to take some alternative action that is dictated by theoretical rather than

data-analytic considerations.

The growing procedures considered here are entirely unsupervised. No modifications

are made for the sake of the analysis.

1.2 Relation to Previous Work

Tree-structured vector quantizers were introduced by Buzo et al. [5] in the context of

speech coding. Greedy growing algorithms for the design of TSVQ have been suggested by

a number of authors. Makhoul et al. [17] proposed splitting the node making the greatest

contribution to the overall distortion. The reduction of distortion criteria considered here

was first proposed by Chou [6], and applied to greedy growing of balanced (fixed rate)

trees. Riskin and Gray [31], and Balakrishnan [2], considered splitting criterion based

on the complexity-normalized reduction of distortion. For further details concerning the

design and application of TSVQ, we refer the interested reader to the comprehensive book
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of Gersho and Gray [9].

The analysis of design methods for vector quantizers of a fixed dimension has focused

primarily on nearest-neighbor quantizers with a fixed number of codewords. Pollard [25, 27]

showed that empirically optimal nearest-neighbor quantizers converge to the optimal quan-

tizer Q∗ for the underlying distribution of the training vectors when Q∗ is unique. Adopting

a more analytic approach, Sabin and Gray [32] established the asymptotic consistency of

the generalized Lloyd (k-means) algorithm. Nobel and Olshen [23] studied the structural

consistency of tree-structured quantizers produced by a greedy algorithm similar to that

considered here (see the discussion below). In each of these papers the authors considered

stationary, ergodic training vectors. In [26] Pollard established a central limit theorem for

the codewords of empirically optimal quantizers designed from independent training vectors.

Recursive partitioning of a multidimensional feature space has a long history in statistics,

dating from the work of Morgan and Sonquist [18] (see also Sonquist [33]), Anderson [1],

Patrick and Fisher [24], and others. More recently, a number of authors have undertaken

a systematic analysis of histogram classification and regression schemes based on data-

dependent partitions. Gordon and Olshen [10] and later Brieman et al. [3], found sufficient

conditions for the consistency of classification rules based on recursive partitioning of a

Euclidean observation space. Gordon and Olshen [11, 12], Breiman et al. [3], and Butler et

al. [4] established similar results in the context of regression and survival analysis. In each

case, the algorithms to which the cited papers apply require supervision to insure that the

diameters of the underlying partitions tend to zero.

LeBlanc and Crowley [13] studied application of an unsupervised tree-structured algo-

rithm to the empirical distributions of data in a survival analysis context. Improving the

earlier results of Breiman et al. [3], Lugosi and Nobel [16] and Nobel [21] established weak

sufficient conditions for the consistency of unsupervised histogram classification and regres-

sion schemes based on data-dependent partitions with non-rectangular cells. Their results

apply to trees produced by the recursive growing procedures discussed here.

Nobel and Olshen [23] analyzed a greedy growing algorithm for TSVQ that was proposed

in [30, 2]. The algorithm employs a splitting criterion that is equal to the reduction of

distortion divided by the increase in bit rate (expected depth of the tree). Termination of

the algorithm is rate-based, rather than iteration-based as it is here. The analysis in [23] is

concerned primarily with termination of the algorithm, and with the structural consistency

of trees produced from a convergent sequence of distributions. The results of this paper

show that trees produced by repeated application of the complexity normalized splitting
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criterion to a fixed, compactly supported distribution have distortion tending to zero (see

[23] for more details).

1.3 Summary

Precise definitions of tree structured partitions and tree structured vector quantizers are

given in the next section. Section 3 contains a description of local splitting rules and a precise

definition of the recursive growing procedure. Section 4 is devoted to the presentation and

discussion of the principle results of the paper. Analysis of the recursive growing procedure

begins in Section 5, where several important properties of the distortion-based splitting

criterion are established. Sections 6 and 7 examine the asymptotic distortion of quantizers

produced from a convergent sequence of distributions. It is shown in Theorem 1 that the

empirical distortion of trees produced from a convergent sequence of distributions will tend

to zero if the limiting distribution has finite second moment and the size of the trees tends

to infinity. Theorem 3 shows that the same is true of distortions measured with respect to

the limiting distribution, if that distribution is absolutely continuous. Section 8 considers

application of the recursive growing algorithm to the empirical distributions of stationary

ergodic training vectors. The proofs of several technical results are given in the appendix.

2 Basic Definitions

2.1 Vector Quantizers

A vector quantizer is a map Q : IRd → C where C = {c1, . . . , cm} ⊆ IRd is a finite set

of representative vectors known as the codebook of Q. In statistical terminology, Q is a

multivariate clustering scheme, and the vectors in C are its cluster centers. Every quantizer

Q gives rise to a partition of IRd having cells Ai = {x : Q(x) = ci} for i = 1, . . . ,m. The

cell containing x is defined by

Q[x] = {x′ : Q(x) = Q(x′)} .

When Q is applied to a random vector X ∈ IRd its performance will be judged in terms of

the distortion

D(Q) = E‖Q(X)−X‖2 =
∫
‖Q(x)− x‖2dP (x) , (1)

where ‖ · ‖ is the ordinary Euclidean norm on IRd.
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2.2 Half-spaces and Polytopes

A closed halfspace H ⊆ IRd is any set of the form H = {x : x · ω ≥ a}, where ω ∈ IRd is a

fixed weight vector, and a is a real-valued threshold. An open half-space is the complement

of a closed halfspace. Let H denote the collection of all open and closed halfspaces in IRd.

A halfspace H is said to be axis-parallel if one component of its weight vector has absolute

value one, and the rest are zero, e.g. H = {x : xi ≥ a}. Let H0 denote the collection of all

axis-parallel halfspaces.

In what follows, “polytope” refers to any finite intersection of half-spaces. Thus a poly-

tope may be bounded or unbounded, closed, open, or neither. Let U denote the collection

of all d-dimensional polytopes.

2.3 Tree-structured Partitions

Let T be a finite binary tree. The depth d(t) of a node t ∈ T is the length of the shortest

path from t to the root node of T . The root node itself has depth zero, its children have

depth one, their children have depth two, and so on. The terminal nodes (leaves) of T will

be denoted by T̃ .

A binary tree T ′ is said to be a subtree of T , written T ′ ≤ T , if T and T ′ have the same

root node, and every node of T ′ is a node of T . If T ′ ≤ T and T ′ 6= T then T ′ is said to be

a proper subtree of T , written T ′ < T . For every tree T and every integer r ≥ 0 let T r be

the truncated subtree of T containing only those nodes t ∈ T for which d(t) ≤ r.

A tree-structured partition is described by a pair (T, τ), where T is a binary tree and

τ : T → IRd is a node function that assigns a test vector in IRd to every t ∈ T . Every vector

x ∈ IRd is associated with a descending path in T through a sequence of binary comparisons:

beginning at the root, and at each subsequent internal node of T , x moves to that child of

its current node whose test vector is nearest to x in Euclidean distance. In case of ties, x

moves to the left child of its current node. The cell Ut of a node t ∈ T is the set of vectors

x whose path contains t. Thus the cell of the root node is IRd, and the cell of an internal

node is split between its children by the hyperplane that forms the perpendicular bisector

of their test vectors. The cell of a node t with depth d(t) = k is a polytope having at most

k faces.

More formally, let t0, t1, . . . , tk be a descending path in T from the root node t0 to

another node t = tk. For j = 1, . . . , k let uj = τ(tj), and let u′j be the test vector assigned
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to the sibling of tj . Then

Ut =
⋂
j∈A

{x : ‖x− uj‖ ≤ ‖x− u′j‖} ∩
⋂
j∈B

{x : ‖x− uj‖ < ‖x− u′j‖} ,

where A contains those indices j for which tj is the left sibling of its parent, and B contains

those indices for which it is the right sibling of its parent. The cells {Ut : t ∈ T̃} associated

with the terminal nodes of T form a partition of IRd. This collection will be referred to as

the partition defined by (T, τ).

2.4 Tree-structured Vector Quantizers

A tree-structured vector quantizer (TSVQ) is described by a triple (T, τ,Rep), where (T, τ)

is a tree-structured partition and Rep : T → IRd is a node function that assigns a vector

representative to each t ∈ T . Rep(·) defines a vector quantizer by assigning a vector

representative to each cell of the partition defined by (T, τ), formally,

T (x) =
∑
t∈T̃

Rep(t)I{x ∈ Ut} . (2)

In what follows T will be used to denote a binary tree, a triple (T, τ,Rep) describing a

tree-structured vector quantizer, and the associated mapping given by (2). In each case its

intended meaning will be clear from the context. When the quantizer T defined in (2) is

applied to a random variable X, its distortion is given by

D(T ) = E‖X − T (X)‖2 =
∫
‖x− T (x)‖2dP (x).

Given a triple (T, τ,Rep) and a subtree T ′ ≤ T , there is a unique quantizer (T ′, τ ′,Rep′)

that is determined by restricting the domains of τ and Rep to T ′. Following the notational

convention above, this will be abbreviated by writing T ′ ≤ T without further comment.

3 The Recursive Growing Procedure

This section gives a complete description of the recursive growing procedure, which is pre-

sented in 3.3 below. The next two subsections are devoted to reduction of distortion and

local splitting rules for the procedure.

3.1 Splitting and Reduction of Distortion

Here “splitting” refers to the partitioning of a convex polytope U ∈ U by a half-space H ∈ H

into two constituent polytopes U ∩H and U ∩Hc that are themselves elements of U . Fix a
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distribution P on IRd having finite second moment. If every vector belonging to a polytope

U ∈ U is assigned to a single representative u, the resulting distortion is given by

D(U, u) =
∫

U
‖x− u‖2dP (x) .

The optimal representative for U is its centroid (or center of mass) with respect to P , namely

c = c(U,P ) =
1

P (U)

∫
U
x dP ∈ IRd .

The distortion achieved by the c is denoted by

D∗(U) = D(U, c) = inf
u∈IRd

D(U, u) .

If U is split by a halfspace H, and an optimal representative is assigned to each of the

resulting polytopes, then the resulting reduction of distortion is given by

∆D(U : H) = D∗(U)−D∗(U ∩H)−D∗(U ∩Hc) . (3)

It is shown below that ∆D(U : H) ≥ 0 for every U ∈ U and every H ∈ H. The larger the

value of ∆D(U : H), the more effective is splitting with H as a means reducing distortion.

Remark: Both D∗(·) and ∆D(·) depend on an underlying distribution P on IRd. When

a sequence P1, P2, . . . of such distributions and a fixed reference distribution P are under

consideration, quantities evaluated with respect to Pn will be subscripted by n, e.g. D∗
n(·)

and ∆Dn(·), while those evaluated with respect to P will be written without subscripts, as

above.

3.2 Local Splitting Rules

Every halfspace split of a polytope reduces distortion, but some halfspaces are better than

others. The selection of a splitting halfspace for a given region under a known distribution

is carried out by a local splitting rule. Let P denote the set of all distributions on IRd having

finite second moment. Formally, a local splitting rule is a function ψ : U × P → H that

selects a closed halfspace to split a polytope U under a distribution P . In applications of

the recursive growing procedure, U is a cell of a tree-structured partition, P is the empirical

distribution of a finite training sequence X1, . . . , Xn, and ψ is an algorithm that seeks to

find a splitting halfspace for which the reduction of distortion is large. See Murthy, Kasif,

and Salzberg [19] for an account of splitting rules in the context of decision trees.
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In the simplest case ψ selects a halfspace in order to maximize the reduction of distortion

over all possible candidates, i.e.

ψ1(U,P ) = arg max
H∈H

∆D(U : H) .

While ψ1 is optimal, it is not possible in practice to find the best split of a region U in

an efficient fashion when the training sequence is large and d > 1. As a more efficient

alternative, one may select the best candidate from a subset H′ ⊆ H for which a search is

computationally feasible, i.e.

ψ2(U,P ) = arg max
H∈H′

∆D(U : H) .

The most natural choice ofH′ is the collectionH0 of axis-parallel halfspaces, in which case ψ2

is implemented as follows: (1) for k = 1, . . . , d sort the training vectorsX1, . . . , Xn according

to the values of their k’th coordinate; (2) search for the best halfspace perpendicular to each

coordinate; (3) select from among the d candidate halfspaces that one giving the greatest

overall reduction of distortion. These steps require O(dn log n) operations in the worst case.

Iterative methods, such as the Generalized Lloyd (2-means) algorithm [14], successively

improve the performance of any given halfspace. When iterative methods fail to yield

substantial improvements in performance, local perturbation and random search may be

used to find a new initial halfspace to which the method can be applied, thereby avoiding

local minima. In this case the overall best half-space encountered is taken to be the output

of the rule.

Definition: A local splitting rule ψ will be called admissible if, for every U ∈ U and every

distribution P ∈ P ,

∆D(U : ψ(U,P )) ≥ sup
H∈H0

∆D(U : H) .

Thus admissible local splitting rules reduce the distortion of every polytope by at least as

much as the best axis-parallel halfspace. Initiating iterative methods and random searches

with the bestH ∈ H0 insures that these methods are admissible, at moderate computational

cost. These and other admissible methods can be readily implemented on a digital computer.

3.3 Description of the Growing Procedure

The recursive growing procedure takes as input a distribution P on IRd having finite second

moment, and an integer k specifying the maximum number of iterations it will perform.

During its execution the procedure produces a nested sequence of TSVQ. The initial tree
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consists of a single root node. Subsequent trees are obtained by splitting a single terminal

node of the tree produced at the previous step. In the basic iterative step of the algorithm a

terminal region of the current tree is selected and split by a halfspace: children are appended

to the corresponding node of the tree and the node functions τ(·) and Rep(·) are extended

to the new tree in an optimal way. Selection of the terminal region and halfspace is based on

the reduction of distortion ∆D and the local splitting rule ψ. Termination of the algorithm

occurs after k iterations, or when no improvement of the current tree is possible.

Fix in Advance: A local splitting rule ψ.

Inputs: (1) A distribution P on IRd with finite second moment, and (2) an iteration count

k ≥ 0.

Initialize: Set j = 0. Form an initial tree T0 consisting of a single root node t0 for which

(a) τ(t0) = 0 and (b) Rep(t0) = c(IRd, P ).

Iterate:

1. For each t ∈ T̃j obtain a half-space Ht = ψ(Ut, P ).

2. If ∆D(Ut,Ht) = 0 for every t ∈ T̃j then output Tj and terminate.

3. Otherwise, select t∗ = arg maxt∈T̃ ∆D(Ut : Ht).

4. Produce Tj+1 by adding left and right children t1 and t2, respectively, to t∗.

5. Augment the node functions τ(·) and Rep(·) as follows:

a. Select τ(t1) and τ(t2) so that H = {x : ‖x− τ(t1)‖ ≤ ‖x− τ(t2)‖}.

b. Define Rep(ti) = c(Uti , P ) for i = 1, 2.

6. Increment j := j + 1. If j = k then output Tk and stop.

Remarks:

a. The procedure treats bounded and unbounded cells in the same way. As P has finite

second moment, centroids c(U,P ) exist for every U ∈ U .

b. Recall that Ht = ψ(Ut, P ) is closed by definition. The selection of τ(t1) and τ(t2)

insures that ties are broken in favor of the left daughter node, but any two vectors

having the boundary of H as their perpendicular bisector will do.
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3.4 Non-uniqueness

The recursive growing procedure is not guaranteed to produce a unique sequence of trees

from a fixed input. Non-uniqueness arises from ties that may occur during the procedure’s

operation. A tie between nodes occurs when two or more terminal nodes maximize ∆D,

in which case the algorithm may split any one of these nodes and then continue. In the

same way, a local splitting rule seeking to maximize ∆D(Ut : H) over H ∈ H′ at some leaf

t may need to choose between several equivalent alternatives (a tie within a node). Ties

typically result from symmetries in the input distribution. Non-uniqueness of the algorithm

is addressed by describing its behavior in terms of an ensemble of possible outcomes.

Definition: Fix a local splitting rule ψ. Let Alg(P, k) be the collection of possible TSVQ

produced by applying the recursive procedure to P for k steps using the rule ψ. Let

Alg(P ) =
∞⋃

k=0

Alg(P, k)

be the collection of all TSVQ that can be produced by the procedure from P in any finite

number of steps.

4 Overview of Principal Results

Analysis of an unsupervised procedure is invariably complicated by the fact that one cannot

impose, for the sake of technical convenience, additional structure or constraints on its

operation. There does not appear to be a direct connection between the iterative reduction

of local distortion, and vanishing global distortion. When successive trees are produced

from different distributions, Tn need not be a subtree of Tn+1, and indeed the two may

have markedly different structures. We have endeavored to make minimal assumptions on

the limiting, or fixed, distribution P . Implicitly at least, the analysis must contend with

unbounded cells, cells having large aspect ratios, and irregular support sets. Assuming that

P is compactly supported, or that P has a continuous density bounded away from zero on

a convex set, would lead to simpler proofs.

4.1 Convergent Distributions

In practice, the recursive growing procedure is applied to the empirical distribution P̂n of a

sequence X1, . . . , Xn of random vectors. The Xi are are obtained through experimentation

or simulation, and are usually assumed to be stationary and ergodic. Consider a tree
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Tn ∈ Alg(P̂n, kn) that is produced from P̂n in kn steps. If n is large then P̂n should

approximate the common distribution P of the vectors Xi. If kn is also large, the procedure

should insure that D(Tn) ≈ Dn(Tn) ≈ 0. We first investigate the behavior of the procedure

with respect to a fixed, convergent sequence of distributions, and then specialize to the

empirical distributions of a stationary ergodic process.

Definition: Let P1, P2, . . . and P be probability distributions on IRd. The sequence Pn

converges to P , written Pn → P , if ∫
fdPn →

∫
fdP

for every function f : IRd → IR that is integrable with respect to P .

Fix an admissible local splitting rule ψ and suppose that P1, P2, . . . converge to a dis-

tribution P . Let Tn ∈ Alg(Pn, kn) be produced from Pn in kn steps. The quantity Dn(Tn)

measures the distortion of Tn with respect to the distribution Pn from which it was pro-

duced. Adopting terminology that is standard when Pn = P̂n is the empirical distribution

of a finite training set, Dn(Tn) will be referred to as the empirical distortion of Tn.

Theorem 1 Let ψ be an admissible splitting rule, and suppose that P1, P2, . . . converge

to a distribution P with finite second moment. If Tn ∈ Alg(Pn, kn) and kn → ∞, then

Dn(Tn) → 0.

If the recursive growing procedure is applied to a fixed distribution P without a termina-

tion criterion (e.g. k = ∞), it will produce a (possibly infinite) sequence of tree-structured

vector quantizers. Each iteration of the algorithm reduces distortion so the sequence of

distortions has a limit. Setting Pn = P in the theorem above shows that the limit is zero

when ψ is admissible.

Theorem 2 Let ψ be an admissible local splitting rule, and let P be any distribution with

finite second moment. If the recursive growing procedure is applied repeatedly to P , it will

produce a sequence T0 ≤ T1 ≤ . . . for which D(Tn) → 0.

In practice, the empirical distortion of a tree Tn is typically of less interest than its

distortion under the (unknown) limiting distribution P . Our main result concerns the

asymptotic behavior of Tn with respect to P . Recall that T [x] = {x′ : T (x′) = T (x)} is the
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cell-function of T , and that the diameter of a set U ⊆ IRd is the maximum distance between

any two points of U , diam(U) = supu,v∈U ‖u− v‖.

Theorem 3 Let ψ be an admissible splitting rule, and suppose that P1, P2, . . . converge to

an absolutely continuous distribution P with finite second moment. If Tn ∈ Alg(Pn, kn) and

kn →∞, then

a. D(Tn) → 0.

b. P{x : diam(Tn[x]) > ε} → 0 for every ε > 0.

Note that diam(Tn[x]) accounts for all the points in the cell, not just those that lie in

the support of P . Theorem 3 may be applied to the empirical distributions of a stationary

ergodic process. Let X1, X2, . . . be a stationary ergodic sequence of random vectors in IRd

and let P̂n be the empirical distribution of X1, . . . , Xn.

Theorem 4 Let ψ be an admissible splitting rule, and suppose that the distribution P of

X1 is absolutely continuous with finite second moment. If Tn ∈ Alg(P̂n, kn) and kn → ∞,

then with probability one,

a. D(Tn) → 0.

b. P{x : diam(Tn[x]) > ε} → 0 for every ε > 0.

4.2 General Distortion Measures

Implementation of the recursive growing procedure is governed by the local splitting rule ψ

and the reduction of distortion ∆D. The use of squared Euclidean distance as a distortion

measure is not critical to the analysis. Consideration of more general distortion measures is

possible, at the expense of some technical complications in the proofs. Let ρ : IRd×IRd → IR

be a distortion measure having the following properties:

a. ρ(u, v) ≥ 0 and ρ(u, v) = 0 if and only if u = v.

b. ρ(u, v) is jointly continuous in both variables.

c. If ‖x− u‖ > ‖x− v‖ then ρ(x, u) > ρ(x, v).

d. For every compact set Λ ⊂ IRd, and every sequence of vectors vn →∞,

min
x∈Λ

ρ(x, vn) →∞.
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Following the definitions for squared-error distortion given in the previous section, for each

polytope U ∈ U and each v ∈ IRd let

Dρ(U, v) =
∫

U
ρ(x, v)dP (x) ,

be the average distortion incurred when every element of U is assigned to a single represen-

tative v, and let

D∗
ρ(U) = inf

v∈IRd
D(U, v)

be the optimal single-representative distortion for U with respect to ρ. Any vector v achiev-

ing the infimum above is referred to as a centroid of U with respect to P . All the results of

the previous section apply to a recursive growing procedure that is defined in terms of the

reduction

∆Dρ(U : H) = D∗
ρ(U)−D∗

ρ(U ∩H)−D∗
ρ(U ∩Hc) ,

provided that the moment condition is replaced by the assumption that the (fixed or lim-

iting) distribution P satisfies ∫
max
v∈Λ

ρ(x, v)dP (x) <∞

for every compact set Λ ⊆ IRd. In this more general setting one may consider r’th power

distortion measures ρ(u, v) = ‖u− v‖r with r ≥ 1, and input-weighted distortion measures

of the form ρ(u, v) = σ(u)‖u− v‖r.

5 Preliminary Results

In what follows it will be assumed that the moment condition

M(P ) 4=
∫
‖x‖2dP <∞

holds for every distribution P under consideration. This insures thatD∗(U) and ∆D(U : H)

are well-defined for every polytope U and every halfspace H. In order to simplify notation,

define

∆D(U : ψ) = ∆D(U : ψ(U,P ))

whenever U ∈ U and P is the same distribution that is used to evaluate ∆D.

Several basic properties of the ∆D splitting criterion are summarized in the following

propositions. Propositions 1 and 2 appear in [6]: proofs are given below for the sake of

completeness. See [7] for more details concerning monotone tree functionals in the context

of pruning.
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Proposition 1 For every polytope U ∈ U and every half-space H ∈ H, the quantity ∆D(U :

H) is non-negative.

Proof: If u = c(U,P ), then by the definition of D∗(·),

D∗(U) =
∫

U∩H
‖x− u‖2dP (x) +

∫
U∩Hc

‖x− u‖2dP (x)

≥ D∗(U ∩H) +D∗(U ∩Hc) ,

so that ∆D(U : H) ≥ 0.

Proposition 2 If T ∈ Alg(P ) and S ≤ T then D(S) ≥ D(T ).

Proof: If S 6= T then there exists a node s ∈ S̃ whose children s1 and s2 are nodes of T . Let

S′ be the subtree of T having nodes S∪{s1, s2}. Consider the hyperplane H = ψ(P,Us) ∈ H

such that Us1 = Us ∩H and Us2 = Us ∩Hc. Then

D(S)−D(S′) = D∗(Us)−D∗(Us1)−D∗(Us2) = ∆D(Us : H) ≥ 0

If S′ 6= T repeat the argument. At each step distortion is reduced, and the result follows.

2

Proposition 3 For each local splitting rule ψ and each tree-structured partition (T, τ),∑
t∈T ∆D(Ut : ψ) ≤M(P ).

Proof: By expanding each term in the sum using (3) it is evident that

∑
t∈T

∆D(Ut : ψ) = D∗(IRd)−
∑
t∈T̃

∆D(Ut : ψ)

≤ D∗(IRd) .

The optimality of D∗(·) insures that the last term is less than M(P ). 2

The following lemmas summarize two geometric properties of distortion that will play

a key role in the results that follow.

Lemma 1 If ψ is an admissible splitting rule, then for every set U ⊆ IRd, every distribution

P , and every number β > 0,

∆D(U : ψ) ≥ β2

2d2
· P{x ∈ U : ‖x− c(U,P )‖ > β} . (4)
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Proof: Fix a distribution P , a polytope U ∈ U with P (U) > 0, and a number β > 0. As ψ

is permissible, it suffices to exhibit a halfspace H ∈ H0 such that ∆D(U : H) satisfies the

stated bound. For fixed a > 0 and k = 1, . . . , d define closed axis-parallel halfspaces

H+
k (a) = {x : xk ≥ a} and H−

k (a) = {x : xk ≤ −a} ,

and let B(x, λ) be the Euclidean ball of radius λ centered at the vector x. A straightforward

argument shows that for every β > 0,

B(0, β)c ⊆
d⋃

k=1

[H+
k (d−1/2β) ∪H−

k (d−1/2β)] .

Let c = c(U,P ) and define halfspaces H2j−1 = H−
j (d−1/2β) + c and H2j = H+

j (d−1/2β) + c

for j = 1, . . . , d. Then

B(c, β)c ⊆
2d⋃
i=1

Hj ,

and by the union bound

P (U ∩B(c, β)c) ≤
2d∑

j=1

P (U ∩Hj) .

Therefore there is a half-space H among H1, . . . ,H2d for which

P (U ∩H) ≥ P (U ∩B(c, β)c)
2d

. (5)

We will show that ∆D(U : H) satisfies the lower bound (4) above.

Let v∗ be the vector in H closest to c. Then the inequality (c− v∗)t(x− v∗) ≤ 0 holds

for every x ∈ H (cf. [15][p. 50]), so that

‖x− c‖2 − ‖x− v∗‖2 ≥ ‖c− v∗‖2 =
β2

d
.

If c1 is the centroid of V = U ∩H and c2 is the centroid of W = U ∩Hc, then

∆D(U : H) = D(U, c)−D(V, c1)−D(W, c2)

= (D(V, c)−D(V, c1)) + (D(W, c)−D(W, c2))

≥ D(V, c)−D(V, c1)

≥ D(V, c)−D(V, v∗)

=
∫

V
(‖x− c‖2 − ‖x− v∗‖2)dP

≥ β2

d
P (V )

≥ β2

2d2
P (U ∩B(c, β)c) .
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The first two inequalities follow from the choice of c1 and c2, while the last follows from

(5). 2

Lemma 2 Let P1, P2, . . . converge to P with M(P ) < ∞. For every δ > 0 there exist

constants β, γ > 0, depending only on δ and P , such that for every tree T ∈ Alg(Pn) with

Dn(T ) ≥ δ,

Pn{x : ‖x− T (x)‖ ≥ β} > γ

when n is sufficiently large.

Proof: Suppose that there is a number K < ∞ such that Pn(B(0,K)) = 1 for each n.

Then ‖T (x)‖ ≤ K for each T ∈ Alg(Pn) and each x ∈ IRd. If some T ∈ Alg(Pn) satisfies

Dn(T ) ≥ δ > 0 then as ‖x− T (x)‖2 ≤ 4K2,

δ ≤
∫
‖x− T (x)‖2dPn

≤ δ

2
+ 4K2Pn

x : ‖x− T (x)‖ ≥

√
δ

2


and consequently

Pn

x : ‖x− T (x)‖ ≥

√
δ

2

 >
δ

4K2

which gives the desired bound. The more general case, in which the distributions Pn do not

share a bounded support set, is considered in Appendix A below. 2

6 Convergence of Empirical Distortions

When it is applied to a fixed distribution, the recursive growing procedure creates a nested

sequence of tree-structured vector quantizers. Every element T ∈ Alg(P, k) has an associ-

ated trajectory of the form

S0 < S1 < . . . < Sk′ . (6)

The initial tree S0 consists of a single root node, the final tree Sk′ = T , and for each

j = 0, 1, . . . , k′ − 1 the tree Sj+1 is produced from Sj by one iteration of the growing

procedure. The trajectory of T explicitly describes its production from the root node under

the distribution P . When k′ = k the trajectory (6) is said to be complete. If k′ < k then the

algorithm terminated prior to its k’th iteration, and in this case ∆D(Ut, ψ(P,Ut)) = 0 for

every t ∈ T̃ . The analytical properties of such trajectories were studied in [23]. Trajectories
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of a different sort, based on iterations of a continuous map, were studied by Sabin and Gray

[32] in their analysis of the empirical behavior of the Lloyd algorithm.

Lemma 3 If T ∈ Alg(P, k) has a complete trajectory of the form S0 < S1 < . . . < Sk = T

then

min
1≤j≤k

∑
s∈S̃j−1

∆D(Us : ψ) ≤ M(P )
w(k)

where w(k) =
∑k

j=1 j
−1.

Proof: For j = 1, . . . , k let sj−1 ∈ S̃j−1 be the terminal node that is split to form Sj . Since

Sj−1 has exactly j such nodes, the greedy node selection protocol insures that

j−1
∑

s∈S̃j−1

∆D(Us : ψ) ≤ ∆D(Usj−1 : ψ) .

Therefore,

w(k) · min
1≤j≤k

∑
s∈S̃j−1

∆D(Us : ψ) ≤
k∑

j=1

∆D(Usj−1 : ψ) ≤
∑
t∈T

∆D(Ut : ψ) ,

which is less than M(P ) by Proposition 3. 2

Proof of Theorem 1: If Tn has an incomplete trajectory then for each t ∈ T̃n, ∆Dn(Ut :

ψ) = 0 . It follows from Lemma 1 that Pn(Ut) is zero, or is concentrated at the single point

c(Ut, Pn). In either case, D∗
n(Ut) = 0 for each t ∈ T̃n, and it follows that Dn(Tn) = 0.

Now fix δ > 0 and consider a tree Tn ∈ Alg(Pn, kn) for whichDn(Tn) > δ. The trajectory

of Tn is necessarily complete, and by the preceding Lemma there exists Sn ≤ Tn such that

Sn ∈ Alg(Pn) and ∑
s∈S̃n

∆Dn(Us : ψ) ≤ M(Pn)
w(kn)

. (7)

It follows from Proposition 2 thatDn(Sn) > δ, and in view of Lemma 2, there exist constants

β, γ > 0, depending only on δ and P , such that

Pn{x : ‖x− Sn(x)‖ ≥ β} > γ

when n is large. As the terminal regions of Sn form a partition of IRd, the admissibility of

ψ and Lemma 1 imply that∑
s∈S̃n

∆Dn(Us : ψ) ≥ β2

2d2
Pn{x : ‖x− Sn(x)‖ ≥ β} ≥ η , (8)

where η = γβ2/2d2 > 0 is independent of n. As M(Pn) → M(P ) < ∞ and w(kn) grows

without bound as n tends to infinity, (7) and (8) imply that Dn(Tn) > δ for at most finitely

many values of n. As δ > 0 was arbitrary, the proof is complete. 2
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7 Asymptotic Distortion for Convergent Distributions

This section is concerned with the distortion of trees produced from a convergent sequence

of distributions Pn → P . Consider trees Tn ∈ Alg(Pn, kn). If kn → ∞ then the empirical

distortion Dn(Tn) → 0 by Theorem 1. It is natural to assume that Dn(Tn) is close to D(Tn)

when n is large because Pn ≈ P , but a rigorous proof must address two critical problems.

The first problem is that the trees Tn grow larger and more complicated as kn tends to

infinity. The second problem is that the non-uniqueness of Alg(·) and the variation of Pn

with n make Tn a ‘moving target’. In particular, Tn need not be a subtree of Tn+1.

Lemma 4 shows that for a fixed margin of error ε > 0, we may focus our attention

on truncated versions T r
n of Tn. Here r = r(ε) is a finite integer that tends to infinity as

ε→ 0. Proposition 4 shows that when r is fixed the difference Dn(T r
n)−D(T r

n) → 0 if the

representative vectors of each tree T r
n , n ≥ 1, are contained in a fixed compact set. The

existence of such a compact set is established in Lemma 5.

Lemma 4 Let {Pn}∞n=1 be as in Theorem 1 and let Tn ∈ Alg(Pn, kn) for n ≥ 1. If kn →∞

then

lim
r→∞

[
lim sup

n→∞
Dn(T r

n)
]

= 0 (9)

Proof: It is enough to show that Dn(T rn
n ) → 0 for every increasing sequence of integers

rn →∞. Fix such a sequence and recall that the production of each tree Tn ∈ Alg(Pn, kn)

is described by a finite trajectory

root = S0,n ≤ S1,n ≤ . . . ≤ Sk′n,n = Tn .

where k′n ≤ kn. Let ln be the last stage at which every vertex of Sl,n has depth at most rn,

ln = max{l : d(s) ≤ rn for every s ∈ Sl,n} ,

and define the corresponding tree

Sn = Sln,n ∈ Alg(Pn, ln) .

Partition the integers into sets

N1 = {n : rn ≥ k′n} and N2 = {n : k′n > rn} .

If n ∈ N1 then ln = k′n so that Sn = Tn. Therefore Dn(Sn) = Dn(Tn) → 0 if n ∈ N1 tends to

infinity. If n ∈ N2 it is easy to see that ln ≥ rn. As rn →∞ it follows from Theorem 1 that
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Dn(Sn) → 0 if n ∈ N2 tends to infinity. Thus Dn(Sn) → 0 and since Dn(T rn
n ) ≤ Dn(Sn) it

follows that Dn(T rn
n ) → 0. 2

Definition: For each integer r ≥ 0 and every number K ∈ (0,∞) let T (r,K) be the family

of all tree-structured vector quantizers T such that

a. d(t) ≤ r for every t ∈ T , and

b. ‖T (x)‖ ≤ K for every x ∈ IRd

Thus T (r,K) contains all those TSVQ whose leaves have depth at most r, and whose

codewords lie in a sphere of radius K about the origin.

The proofs of Lemma 5 and Proposition 4 can be found in Appendices B and C, respec-

tively.

Lemma 5 Let P1, P2, . . . converge to an absolutely continuous distribution P with M(P ) <

∞, and let Tn ∈ Alg(Pn) for n ≥ 1. For each r ≥ 0 there exists a number K(r) < ∞ such

that

‖ c(Ut, Pn)‖ ≤ K(r)

for each n ≥ 1 and each t ∈ T r
n.

Proposition 4 If Pn → P with M(P ) < ∞ then for each fixed r ≥ 0 and each number

K ∈ (0,∞),

|D(T )−Dn(T )| → 0 (10)

uniformly over T in T (r,K).

In order to establish Theorem 3 it is first necessary to establish an asymptotic connection

between the distortion of a vector quantizer and the size of its cells. Recall that the cell-

function of a quantizer Q is defined by Q[x] = {x′ : Q(x′) = Q(x)} for each x ∈ IRd. The

following result is due to Nobel [22].

Theorem A Let P be an absolutely continuous distribution on IRd and let Q1, Q2, . . . be

vector quantizers having convex cells. If D(Qn) → 0, then

P{x : diam(Qn[x]) > ε} → 0

for every ε > 0.
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Proof of Theorem 3: An application of Lemma 5 shows that for every r ≥ 0 and every

n ≥ 1,

D(T r
n) ≤ Dn(T r

n) + |D(T r
n)−Dn(T r

n)|

≤ Dn(T r
n) + sup

T∈T (r,K(r))
|D(T )−Dn(T )| .

It follows from (10) that

lim sup
n→∞

D(T r
n) ≤ lim sup

n→∞
Dn(T r

n) (11)

for every r ≥ 0, and in view of (9),

lim
r→∞

[
lim sup

n→∞
D(T r

n)
]

= 0 .

Thus there exist trees S1, S2, . . . such that Sn ≤ Tn for each n, and D(Sn) → 0. Theorem

A shows that diam(Sn[x]) → 0 in P -probability. But Sn ≤ Tn implies that diam(Sn[x]) ≥

diam(Tn[x]) for each x ∈ IRd, and it follows that diam(Tn[x]) → 0 in P -probability.

Fix δ > 0 and let Un be the union of those cells Tn[x] such that diam(Tn[x]) > δ.

Integrating over each cell in turn, the optimality of T (x) guarantees that

D(Tn) ≤ δ2 +
∫

Un

‖x− Tn(x)‖2dP

≤ δ2 +
∫

Un

‖x‖2dP

Since P (Un) → 0 and P has finite second moment,

lim sup
n→∞

D(Tn) ≤ δ2,

and as δ > 0 was arbitrary, the proof is complete. 2

Remark: The proof of Theorem 3 applies to suitably pruned subtrees of Tn. Let Prune(·)

be any pruning scheme and define Sn = Prune(Tn) to be the pruned subtree of Tn. If for

each r ≥ 1 there exists N(r) <∞ such that Sr
n = T r

n for each n ≥ N(r), then D(Sn) → 0.

8 Large Sample Performance

In practice, recursive partitioning schemes are commonly applied to distributions derived

from finite training sets, which are obtained from experiments or simulations. If the random

vectors comprising the training set share a common distribution P , it is natural to ask

whether large trees produced from large training sets will yield effective compression with

respect to P .
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It is assumed in Theorem 3 that
∫
fdPn →

∫
fdP for every function f that is integrable

with respect to P . However, a careful inspection of the proof shows that it is enough to

require the convergence of integrals for every function in a countable family F , which we

now describe. Let Q denote the set of rational numbers. Let Br be the collection of balls

B(u, a) and Hr the collection of halfspaces H = {x : u ·x ≥ a} with u ∈ Qd and a ∈ Q. Let

Ur be the collection of all finite intersections of halfspaces H ∈ Hr, and define F to be all

those functions of the form

f(x) = max
v∈B1

‖x− v‖2 · IB2(x) with B1, B2 ∈ Br

and

f(x) = ‖x− z‖2 · IU (x) with z ∈ Qd, U ∈ Ur .

Then F is countable, and it can be shown that the convergence of Pn to P in Theorem 3

can be replaced by the assumption that
∫
fdPn →

∫
fdP for every f ∈ F .

Let X1, X2, . . . ∈ IRd be a stationary ergodic sequence of random vectors with Xi ∼ P ,

and let P̂n denote the empirical distribution of X1, . . . , Xn. As F is countable, the ergodic

theorem insures that, with probability one,
∫
fdP̂n →

∫
fdP for every f ∈ F . Thus

Theorem 4 follows immediately from the strengthened version of Theorem 3.
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Appendix A: Proof of Lemma 2

Proof of Lemma 2: We consider the general case in which the distributions Pn do not

share a bounded support set. Given δ > 0 set ε = δ/5 and define constants α1 ≤ α2 ≤ α3

as follows. Let α1 be so large that ∫
B(0,α1)c

‖x‖2dP < ε . (12)

Choose α2 > α1 in order to make

K = inf{‖u− v‖2 : ‖u‖ ≤ α1, ‖v‖ > α2} ≥
α2

1

ε

∫
‖x‖2dP , (13)
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and select α3 > α2 so that∫
B(0,α3)c

max{‖x− v‖2 : ‖v‖ ≤ α2}dP < ε . (14)

To simplify the notation let Λj = B(0, αj) for j = 1, 2, 3.

Let T be any tree in Alg(Pn). When n is sufficiently large the contribution to Dn(T )

from vectors x such that ‖x‖ > α3 or ‖T (x)‖ > α2 is uniformly bounded from above.

Indeed, by virtue of (14) and the fact that Pn → P ,∫
‖x− T (x)‖2I{x ∈ Λc

3 ∨ T (x) ∈ Λc
2}dPn

≤
∫
‖x− T (x)‖2I{T (x) ∈ Λc

2}dPn +
∫
‖x− T (x)‖2I{x ∈ Λc

3 ∧ T (x) ∈ Λ2}dPn

≤
∫
‖x− T (x)‖2I{T (x) ∈ Λc

2}dPn +
∫
Λc

3

max{‖x− v‖2 : v ∈ Λ2}dPn

≤
∫
‖x− T (x)‖2I{T (x) ∈ Λc

2}dPn + ε+ o(1) , (15)

where o(1) → 0 as n → ∞ and is independent of T . The last integral in (15) may be

bounded as follows:∫
‖x− T (x)‖2I{T (x) ∈ Λc

2}dPn

≤
∫
‖x‖2I{T (x) ∈ Λc

2}dPn

≤
∫
‖x‖2I{x ∈ Λ1 ∧ T (x) ∈ Λc

2}dPn +
∫
‖x‖2I{x ∈ Λc

1}dPn

≤ α2
1Pn{x : ‖x− T (x)‖ ≥ K}+

∫
Λc

1

‖x‖2dPn (16)

≤ α2
1Dn(T )
K

+ ε+ o(1) (17)

≤ α2
1

∫
‖x‖2dPn

K
+ ε+ o(1)

≤ 2ε+ o(1) .

The first inequality follows from the optimality property of centroids by integrating over

each cell T [x] in turn, and noting that T ∈ Alg(Pn) implies T (x) = c(T [x], Pn) for every

x. Inequality (16) follows from the definition of K in (13), while (17) is a consequence of

Markov’s inequality and (12). The last inequality follows from (13).

Each of the terms o(1) appearing in (15) and (17) is independent of T , and therefore,

when n is sufficiently large,∫
‖x− T (x)‖2I{x ∈ Λc

3 ∨ T (x) ∈ Λc
2}dPn ≤ 4ε
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for each tree T ∈ Alg(Pn). In particular, if Dn(T ) > δ (= 5ε) then∫
‖x− T (x)‖2I{x ∈ Λ3 ∧ T (x) ∈ Λ2}dPn > ε .

Since ‖x − T (x)‖2 is bounded on the event {x ∈ Λ3 ∧ T (x) ∈ Λ2}, the argument for the

special case considered above applies, and the result follows. 2

Appendix B: Proof of Lemma 5

We require two preliminary results regarding the asymptotic behavior of the reduction

∆Dn(Un : Hn) when Pn → P . Proposition 5 concerns non-negligible sets and Lemma 6

concerns lopsided splits.

Proposition 5 Let Pn → P and let U1, U2, . . . ⊆ IRd be such that Pn(Un) ≥ α > 0. Then

there exists a number M <∞ such that

‖ c(Un, Pn)‖ ≤M

for each n, and if ψ is an admissible local splitting rule, then

∆Dn(Un : ψ) > ε

for some fixed ε > 0 and n sufficiently large.

Proof: Select a bounded set Λ ⊂ IRd such that P (Λ) > 1− α/2. Setting zn = c(Un, Pn) it

is clear that ∫
‖x‖2dPn ≥

∫
Un

‖x‖2dPn

≥
∫

Un

‖x− zn‖2dPn

≥
∫

Un∩Λ
‖x− zn‖2dPn

≥ min
x∈Λ

‖x− zn‖2Pn(Un ∩ Λ) .

By letting n→∞ and then rearranging terms one finds that

lim sup
n→∞

[
min
x∈Λ

‖x− zn‖2
]
≤ 2
α

∫
‖x‖2dP < ∞ .

The desired bound on ‖zn‖ is an immediate consequence of this last inequality because Λ

was assumed to be bounded.
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As for the second inequality above, the conditions on Pn and Un hold along every

subsequence of {1, 2, . . .}, so that by passing to a suitable subsequence and renumbering if

necessary, it is enough to show that

lim sup
n→∞

∆Dn(Un : ψ) > 0 .

The argument above shows that the vectors {zn = c(Un, Pn)} are contained in a fixed

compact set. Extract a convergent subsequence {zm} with limit z∗. As P has a density

there is a number β > 0 such that P (B(z∗, 2β)) ≤ α/3. By Proposition 1 the inequality

∆Dn(Un : ψ) ≥ β2

2d2
· Pn(Un ∩B(zn, β)c)

holds for each n, and as Pn → P , the choice of β insures that

∆Dn(Un : ψ) ≥ β2α

4d2
> 0

when n is sufficiently large. 2

Lemma 6 Let Pn → P and let U1, U2, . . . ⊆ IRd be such that Pn(Un) ≥ α > 0. If H1,H2, . . .

are half-spaces for which Pn(Un ∩Hc
n) → 0 then ∆Dn(Un : Hn) → 0.

Proof: Set Vn = Un ∩Hn and Wn = Un ∩Hc
n for each n ≥ 1. By assumption Pn(Wn) → 0,

so that

lim inf
n→∞

Pn(Vn) = lim inf
n→∞

Pn(Un) ≥ α .

By virtue of Proposition 5 there is a fixed compact set Λ ⊆ IRd containing both c(Un, Pn)

and c(Vn, Pn) for each n. If A is any subset of IRd then

∆Dn(Un : Hn) = D∗
n(Un)−D∗

n(Vn)−D∗
n(Wn)

≤ D∗
n(Un)−D∗

n(Vn)

= inf
v∈Λ

∫
Un

‖x− v‖2dPn − inf
v∈Λ

∫
Vn

‖x− v‖2dPn

≤ sup
v∈Λ

∣∣∣∣ ∫
Un

‖x− v‖2dPn −
∫

Vn

‖x− v‖2dPn

∣∣∣∣
≤ sup

v∈Λ

∫
Wn

‖x− v‖2dPn

≤
∫

Wn

sup
v∈Λ

‖x− v‖2dPn

≤ Pn(Wn) · sup{‖u− v‖2 : u ∈ A, v ∈ Λ} +
∫

Ac
sup
v∈Λ

‖x− v‖2dPn .

Thus if A is bounded,

lim sup
n→∞

∆Dn(Un : Hn) ≤
∫

Ac
sup
v∈Λ

‖x− v‖2dP .
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Suitable choice of A makes the right hand side arbitrarily small, and the result follows. 2

Proof of Lemma 5: In view of Proposition 5 it suffices to show that for each r ≥ 0 there

exists δ > 0 and N <∞, both depending on r, such that

Pn(Ut) > δ (18)

for each n ≥ N and each t ∈ T r
n . Recall that T 0

n consists of a single root node t0 with

Ut0 = IRd. If the desired property fails to hold, then let r0 ≥ 1 be the least integer r such

that

lim inf
n→∞

min{Pn(Ut) : t ∈ T r
n} = 0 .

Find a sequence of nodes {sn}, with sn ∈ T r0−1
n , such that the cell Un of sn is split by a

halfspace, Hn = ψ(Pn, Un) and lim inf Pn(Un ∩Hc
n) = 0. As r0 is minimal, lim inf Pn(Un) >

0, and it follows from Proposition 5 that

lim inf
n→∞

∆Dn(Un : ψ) > 0 .

On the other hand, Lemma 6 shows that

lim inf
n→∞

∆Dn(Un : ψ) = 0 .

In this way we arrive at a contradiction and conclude that (18) must hold for every r ≥ 0.

This completes the proof. 2

Appendix C: Proof of Proposition 4

Definition: Let P be a probability distribution on IRd. A class F of measurable functions

f : IRd → IR is said to be bracketing with respect to P if

a. There exists a P -integrable function F such that |f(x)| ≤ F (x) for every f ∈ F and

every x ∈ IRd,

b. For every ε > 0 there is a finite set of functions Gε = {g1, ..., gr} such that every f ∈ F

has bracketing functions g, g ∈ Gε with the property that

(a) g ≤ f ≤ g

(b)
∫
(g − g)dP ≤ ε .
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Note that the bracketing class Gε need not be contained in F . The function F in condition

(i) is called an envelope for F . If F has a constant envelope F ≡ K <∞, then it is said to

be uniformly bounded.

As an easy consequence of the definition, it can be seen that a product of bracketing

classes is again a bracketing class.

Lemma 7 Let F1 and F2 be bracketing with respect to P . If F1 is uniformly bounded then

the product F = F1 · F2 = {f1 · f2 : f1 ∈ F1, f2 ∈ F2} is bracketing with respect to P . 2

Proposition 6 Let Λ be a compact subset of IRd. If
∫
‖x‖2dP <∞ then the class

G = {gz(x) = ‖x− z‖2 : z ∈ Λ}

is bracketing with respect to P .

Proof: The function F (x) = supu∈Λ ‖x − u‖2 is a P -integrable envelope for F . The

finite approximation condition follows from the continuity of h(u, v) = ‖u − v‖2 and the

compactness of Λ. (See [29] or [20] for more details.) 2

A short proof of the following result can be found in [23]. See also the example in

Chapter 2 of Pollard [28].

Proposition 7 Let H be the set of indicator functions of open and closed half-spaces in

IRd. If P has a density then H is bracketing with respect to P .

The following theorem establishes a uniformity property of bracketing classes with re-

spect to a convergent sequence of distributions. For more details and a proof, see [8, 28].

Theorem B If Pn → P and F is bracketing with respect to P then

sup
f∈F

∣∣∣∣∫ fdP −
∫
fdPn

∣∣∣∣ → 0 as n→∞ . 2

Application of Theorem B and the propositions concerning bracketing classes above

establishes the uniform convergence of Dn(T ) to D(T ) over T (r,M) when r and M are

fixed.

Proof of Proposition 4: Fix r and M and let Hr be the r-fold product of H with itself.

Then Hr is bracketing with respect to P by Lemma 7. Consider a tree T ∈ T (r,M). Each
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terminal node t of T has a representative vector zt ∈ B(0,M) and an associated polytope

Ut having at most r faces. In particular, the indicator function of Ut is contained in Hr.

As T has at most 2r terminal nodes,

|D(T )−Dn(T )|

≤
∑
t∈T̃

∣∣∣∣∫
Ut

‖x− zt‖2dP −
∫

Ut

‖x− zt‖2dPn

∣∣∣∣
≤ 2r · sup

f∈F

∣∣∣∣∫ fdP −
∫
fdPn

∣∣∣∣ ,
where

F = {fz(x) = ‖x− z‖2 · h(x) : z ∈ B(0,M) , h ∈ Hr} .

Note that the upper bound above does not depend on the choice of T ∈ T (r,M). Applica-

tion of Lemma 7 to Hr and the class G of Proposition 6 shows that F is bracketing with

respect to P . The result now follows from Theorem B. 2
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