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Abstract

This paper considers several aspects of the sequential prediction problem for un-

bounded, non-stationary processes under p-th power loss ℓp(u, v) = |u−v|p, 1 < p <∞.

In the first part of the paper it is shown that Bayes prediction schemes are Cesaro op-

timal under general conditions, that Cesaro optimal prediction schemes are unique in a

natural sense, and that Cesaro optimality is equivalent to a form of weak calibration.

Connections between calibration and stronger forms of optimality are briefly consid-

ered. Extensions of the existence and uniqueness results to generalized prediction, and

prediction from observations with additive noise, are established. For binary processes,

it is shown that thresholding an optimal prediction scheme for the squared loss yields

an optimal binary prediction scheme for the Hamming loss.

In the second part of the paper, it is shown how to construct, from a countable

family of prediction schemes, a single composite scheme whose asymptotic performance

on any suitable process dominates the performance of each member of the family. The

construction is based on aggregating methods for individual binary sequences. Using

the construction some results of Algoet on the existence of Cesaro optimal schemes for

families of ergodic processes are rederived in a direct way and extended to unbounded

processes.
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1 Introduction

The subject of this paper is stochastic sequential prediction. In this problem, the el-

ements of a real-valued stochastic process X = X1,X2, . . . are revealed to a forecaster,

one at a time, beginning with X1. At each time t ≥ 1 the forecaster makes a real-valued

prediction Ft of Xt, based on the observed values of Xt−1 = X1, . . . ,Xt−1. When Xt is

revealed, the forecaster incurs a non-negative loss ℓ(Ft,Xt). We focus here on unbounded,

non-stationary processes and restrict our attention throughout to p’th power loss of the

form ℓp(u, v) = |u− v|p, with 1 < p <∞.

Let R denote the real line, and let R
∗ = {∅} ∪

⋃∞
j=1 R

j be the collection of all finite

length sequences of real numbers, where a sequence of length zero is represented by the

empty set. A prediction scheme is a map F : R
∗ → R. It is assumed in what follows that,

for each j ≥ 1, the restriction of F to j-tuples xj = x1, . . . , xj is a measurable function from

R
j to R. Each prediction scheme F represents a deterministic strategy for the prediction

problem: having observed the past values Xt−1 of a given process, the scheme makes a

prediction F (Xt−1) of the next value Xt. The value of F (Xt−1) does not depend on side

information or on auxiliary randomization.

Assume for the moment that a loss function ℓ = ℓp has been fixed. If a scheme F

is applied successively to the first n terms Xn = X1, . . . ,Xn of a process X, its average

cumulative loss is a random variable, denoted by

Ln(F ) = Ln(F,X) =
1

n

n
∑

t=1

ℓ(F (Xt−1),Xt).

Of central interest here are prediction schemes having small long-run average cumulative

loss. The following notion of optimality is considered, for example, in [2, 13, 18].

Definition: A prediction scheme G is Cesaro optimal, or optimal in the long run average

sense, for a process X if

lim inf
n→∞

[Ln(F,X) − Ln(G,X)] ≥ 0 wp1

for every measurable prediction scheme F . A prediction scheme G is Cesaro optimal for a

family X of processes if it is Cesaro optimal for every process in X .

By definition, a prediction scheme G is Cesaro optimal for a process X if its average

cumulative loss is, asymptotically, less than or equal to the average cumulative loss of any

competing scheme on the same process. Note that the definition does not require that
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the quantities Ln(G,X) or Ln(F,X) converge as n tends to infinity. The notion of Cesaro

optimality is somewhat weak, as it requires only that an optimal scheme perform well on

the average. One may show, for example, that Cesaro optimal schemes exist for any count-

able family of processes X (see, e.g., Foster [18] or Proposition 6 below). In such cases,

stronger criteria of predictive performance (c.f. [13, 38, 39]) may be more appropriate. Two

such criteria, strong optimality and efficiency, are discussed briefly in Section 5. In seeking

prediction schemes that perform well for an uncountable family of processes, Cesaro opti-

mality provides a sensible measure of success. As noted in Section 9.2, no decision scheme

is strongly optimal for the (uncountable) family of bounded ergodic processes; however, one

may construct Cesaro optimal prediction schemes for this family in a variety of ways (see

[2] and Theorem 6 below).

Numerous examples of sequential prediction problems for stationary and more general

processes can be found in the literature; see for example [2, 38]. A good account of stochas-

tic and non-stochastic sequential decision problems, and their relation to calibration and

foundational questions in Statistics, can be found in the work of Dawid [11, 12, 13] and in

the more recent work [38, 14, 39]. A thorough treatment of sequential decision and predic-

tion problems for ergodic (and stationary) processes, and many references to related work

on time series prediction, can be found in the work of Algoet [2]. Algoet studies general

loss functions ℓ for which there exists an envelope Λ(·) such that ℓ(u, v) ≤ Λ(v) < ∞ for

each u and v. The existence of a finite envelope for the p’th power loss ℓp requires that each

process X under study take values in a bounded subset of R, an assumption not made in

this paper. Algoet’s extension in [2] of the stability theorem for martingale differences (see

Lemma 1.1 below) plays a central role in our results.

Our application in Section 9 of aggregating methods for individual sequences to stochas-

tic prediction generalizes and extends recent work of Györfi, Lugosi, and Morvai [24], who

used aggregating method to define randomized predictors for binary ergodic processes. Re-

lated methods were recently applied by Weissman and Merhav [42, 43] to the prediction of

individual and ergodic binary sequences. Aggregating methods were applied in a different

way by Foster [18] to the prediction of binary processes under the squared error. General-

izations of [24] to sequential prediction of bounded, real valued ergodic processes under the

squared error have also been derived, independently, in recent work of Györfi and Lugosi

[22].

2



1.1 Overview

Two preliminary results are presented in the next section. In Section 1.1 the existence and

uniqueness of Cesaro optimal decision schemes for processes satisfying suitable population

and sample moment conditions are established. In particular, it is shown that the Bayes

decision scheme for X is Cesaro optimal, and that any two Cesaro optimal schemes are,

in a natural sense, equivalent. Extensions of these results to generalized prediction and

to prediction from observations with additive noise are established in Sections 4.1 and 4.2,

respectively. Two alternative forms of optimality are described in Section 5. In Section

6 it is shown that Cesaro optimality under the squared loss is equivalent to a form of

weak calibration, and that a stronger form of calibration, considered by Dawid and others,

is equivalent to a stronger form of optimality. Existence, uniqueness, and several other

properties of strongly optimal prediction schemes are briefly discussed. In Section 7 it is

shown that, by suitably thresholding a prediction scheme that is Cesaro optimal under

the squared loss for a binary process, one obtains an optimal prediction scheme under the

Hamming loss.

The problem of aggregating prediction schemes is studied in Section 8. Given a count-

able family of prediction schemes, a composite scheme is constructed whose asymptotic

performance dominates that of each member of the family on any suitable process. By

appropriate choice of the countable family, some results of Algoet [2] on the existence of

universal decision schemes for ergodic processes are rederived and extended to unbounded

processes in a direct way in Section 9. In particular, it is shown that for each p > 1, there

exists a single prediction scheme that is Cesaro optimal under the p’th power loss for any

ergodic process {Xi} such that E|Xi|
q <∞ for some q > p.

2 Preliminary Results

Below we will make repeated use of the following stability result for martingale differ-

ences, due to Algoet [2]. A general account of such results can be found in [40]. For bounded

Zt the lemma may be deduced from standard exponential inequalities for martingale differ-

ence sequences [26, 5].

Lemma A Let X1,X2, . . . be any stochastic process, and let Z1, Z2, . . . ∈ R
d be random vec-

tors such that, for each t ≥ 1, Zt is a measurable function of X1, . . . ,Xt. If supt≥1Eψ(|Zt|) <
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∞ where ψ(u) = u log2(1 + u), then

1

n

n
∑

t=1

Zt −
1

n

n
∑

t=1

E(Zt |X
t−1) → 0 wp1.

The following elementary lemma will also be useful.

Lemma 1 Let φ : [0,∞) → [0,∞) be any function such that φ(x)/x ր ∞ as x ր ∞. If

a1, a2, . . . are non-negative numbers such that n−1
∑n

i=1 φ(ai) ≤ K < ∞ for each n ≥ 1,

then as c→ ∞,

lim sup
n→∞

1

n

n
∑

i=1

I{ai ≥ c} → 0 and lim sup
n→∞

1

n

n
∑

i=1

ai I{ai ≥ c} → 0

Proof: Let c > 0 be so large that φ(c)/c ≥ 1. The first claim follows readily, as

1

n

n
∑

i=1

I{ai ≥ c} ≤
1

n

n
∑

i=1

φ(ai)

ai
I{ai ≥ c} ≤

1

cn

n
∑

i=1

φ(ai).

The second claim is a consequence of the inequalities

1

n

n
∑

i=1

aiI{ai ≥ c} =
1

n

n
∑

i=1

ai

φ(ai)
φ(ai)I{ai ≥ c} ≤

c

φ(c)n

n
∑

i=1

φ(ai).

3 Existence and Uniqueness of Cesaro Optimal Schemes

In this section the existence and uniqueness of Cesaro optimal schemes for general, non-

stationary stochastic processes is established. Let X = X1,X2, . . . ∈ R be any process

satisfying the following population and sample moment conditions:

(A1) supt≥1E|Xt|
p log2(1 + |Xt|

p) < ∞

(A2) lim supn n
−1
∑n

t=1 φ(|Xt|
p) < ∞ for some function φ such that

φ(x)/xր ∞ as xր ∞.

If X is ergodic, then (A2) follows immediately from (A1) and the ergodic theorem. In

general, this implication need not hold.

Definition: The Bayes prediction scheme (c.f. Ferguson [20]) for a process X under the

p’th power loss ℓp is defined by

B(Xt−1) = arg min
a∈R

E[ |Xt − a|p |Xt−1 ]. (1)
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At each time t, the Bayes scheme selects the unique prediction minimizing the condi-

tional expected loss of the next outcome given the previous values of the process. It follows

readily from (1) that E|Xt − B(Xt−1)|p ≤ E|Xt − f(Xt−1)|p for any measurable function

f : R
t−1 → R. In particular, one may view B(Xt−1) as the projection of Xt onto the

space of all random variables f(Xt−1) such that E|f(Xt−1)|p < ∞. Ando and Amemiya

[1] have studied the general properties of such projections and shown that, for a general

increasing sequence of sigma fields, they share the convergence and integrability properties

of conditional expectations (see Section 9 for more details). We require a preliminary fact

concerning integrability of the Bayes scheme (1); related results can be found in [1].

Lemma 2 Let B be the Bayes scheme under ℓp for a process X satisfying (A1). Set Bt =

B(Xt−1) and let ψ(u) = u log2(1 + u). Then for each t,

(a) |Bt|
p ≤ 2pE[|Xt|

p |Xt−1] wp1

(b) ψ( |Bt|
p / 2p ) ≤ E[ψ(|Xt|

p) |Xt−1] wp1

(c) supt≥1Eψ(|Bt|
p) < ∞

Proof: Let X be a process satisfying (A1). Then for fixed t ≥ 1,

|Bt| = E[ |(Bt −Xt) +Xt| |X
t−1 ] ≤ E[ |Xt| |X

t−1 ] + E[ |Xt −Bt| |X
t−1 ]

≤ E[ |Xt| |X
t−1 ] +

(

E[ |Xt −Bt|
p |Xt−1 ]

)1/p

≤ E[ |Xt| |X
t−1 ] +

(

E[ |Xt|
p |Xt−1 ]

)1/p

The second inequality above is a consequence of the monotonicity of Lp-norms, and the

third follows directly from the definition of B(Xt−1). The elementary inequality (a+ b)p ≤

2p−1 (ap + bp) implies that

|Bt|
p ≤ 2p−1

(

E[ |Xt| |X
t−1 ]

)p
+ 2p−1E[ |Xt|

p |Xt−1 ].

By Jensen’s inequality, the first term on the right is at most 2p−1E[ |Xt|
p |Xt−1 ], and

conclusion (a) follows. Inequality (b) follows directly from (a) and the convexity of ψ.

Inequality (c) is an immediate consequence of (b) and assumption (A1).

For processes X = X1,X2, . . . taking values in a bounded interval of the reals, the Cesaro

optimality of the Bayes scheme B follows directly from Theorem 3 in [2]. The next theorem

shows that the Bayes scheme is Cesaro optimal under the more general conditions (A1) and

(A2). In many cases, the Bayes scheme is optimal in much stronger senses (see Section 5

below).
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Theorem 1 (Existence) Let X be a stochastic process taking values in R and let p > 1.

If conditions (A1) and (A2) hold then the Bayes prediction scheme

B(Xt−1) = arg min
a∈R

E[ |Xt − a|p |Xt−1 ]. (2)

is Cesaro optimal for X under the p’th power loss.

Proof: Let F be any prediction scheme. To simplify notation, let Ft = F (Xt−1) and

Bt = B(Xt−1). Fix c > 0, and define auxiliary schemes F ′
t = Ft I{|Ft| ≤ c} and

F ′′
t = Ft I{|Ft| > c} for t ≥ 1. A routine calculation shows that

Ln(F ) = Ln(F ′) + Ln(F ′′) −
1

n

n
∑

t=1

|Xt|
p.

Observe that if |Xt| ≤ c/3 and |Ft| > c, then |Xt − Ft| > |Xt|. This yields the lower bound

Ln(F ′′
t ) ≥

1

n

n
∑

t=1

|Xt − Ft I{|Ft| > c}|p · I{|Xt| ≤ c/3} ≥
1

n

n
∑

t=1

|Xt|
p I{|Xt| ≤ c/3}.

It follows from the last two displays that

lim inf
n→∞

[Ln(F ) − Ln(B) ]

≥ lim inf
n→∞

[Ln(F ′) − Ln(B) ] − lim sup
n→∞

1

n

n
∑

t=1

|Xt|
p I{|Xt| > c/3} wp1. (3)

We now show that {|Xt−Bt|
p : t ≥ 1} and {|Xt−F

′
t |

p : t ≥ 1} satisfy the moment condition

of Lemma A. As F ′ is uniformly bounded, the finiteness of supt≥1Eψ(|Xt − F ′
t |

p) follows

directly from assumption (A1). Moreover,

ψ(|Xt −Bt|
p) ≤ ψ(2p−1 |Xt|

p + 2p−1 |Bt|
p) ≤ ψ(2p |Xt|

p) + ψ(2p |Bt|
p),

and therefore supt≥1Eψ(|Xt −Bt|
p) is finite by (A1) and Lemma 2. Applying Lemma A to

Ln(F ′) and Ln(B) yields the equation

lim inf
n→∞

[Ln(F ′
t ) − Ln(B) ] = lim inf

n→∞
1

n

n
∑

t=1

E[ |Xt − F ′
t |

p − |Xt −Bt|
p |Xt−1] wp1.

The definition of Bt ensures that each term in the last sum is positive with probability one.

It then follows from inequality (3) that

lim inf
n→∞

[Ln(F ) − Ln(B) ] ≥ − lim sup
n→∞

1

n

n
∑

t=1

X2
t I{|Xt| > c/3} wp1.

Letting c tend to infinity, condition (A2) and Lemma 1 imply that the limit supremum

tends to zero. As F was arbitrary, B is Cesaro optimal for X.
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The next result shows that Cesaro optimal schemes are essentially unique, the form of

uniqueness depending on the value of p. Taken together, Theorems 1 and 2 show that every

Cesaro optimal scheme for X under ℓp is equivalent to the Bayes scheme B.

Theorem 2 (Uniqueness) Let X satisfy (A1) and (A2). Suppose that B is the Bayes

scheme defined in (2), and that F is any other Cesaro optimal scheme for X under ℓp. If

p ≥ 2 then

1

n

n
∑

t=1

|Ft(X
t−1) −B(Xt−1)|p → 0 wp1.

If 1 < p < 2 then

1

n

n
∑

t=1

|Ft(X
t−1) −B(Xt−1)|q → 0 wp1

for each 1 ≤ q < p.

Proof: As both F and the B are Cesaro optimal for X,

0 ≤ lim inf
n→∞

[Ln(F ) − Ln(B)] ≤ lim sup
n→∞

[Ln(F ) − Ln(B)]

= − lim inf
n→∞

[Ln(B) − Ln(F )] ≤ 0 wp1. (4)

Thus Ln(F ) − Ln(B) → 0. Define the compound decision scheme H(Xt−1) = (F (Xt−1) +

B(Xt−1))/2, and write

Ln(H) − Ln(B) =

[

Ln(H) −
1

2
Ln(F ) −

1

2
Ln(B)

]

+
1

2
(Ln(F ) − Ln(B)) .

It follows from the last equation and (4) that

lim inf
n→∞

[Ln(H) − Ln(B)] = lim inf
n→∞

[

Ln(H) −
1

2
Ln(F ) −

1

2
Ln(B)

]

= lim inf
n→∞

1

n

n
∑

t=1

−Γ(Ft −Xt, Bt −Xt), (5)

where

Γ(u, v) :=
|u|p

2
+

|v|p

2
−

∣

∣

∣

∣

(u+ v)

2

∣

∣

∣

∣

p

. (6)

If p ≥ 2 then |a + b|p + |a − b|p ≥ 2(|a|p + |b|p) for each a, b ∈ R (c.f. Royden [36],

Lemma 22). Setting a = (u + v)/2, b = (u − v)/2, and rearranging terms shows that

Γ(u, v) ≥ 2−p |u− v|p. It then follows from (5) that

lim inf
n→∞

[Ln(H) − Ln(B)] ≤ lim inf
n→∞

−1

n

n
∑

t=1

2−p |Ft −Bt|
p

= −2−p lim sup
n→∞

1

n

n
∑

t=1

|Ft −Bt|
p.
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If lim supn n
−1
∑n

t=1 |Ft − Bt|
p is positive with positive probability then, by the above in-

equality, B fails to be Cesaro consistent, which contradicts Theorem 1. The case 1 < p < 2

is considered in Section 10.1.

Example: We present a simple example here to illustrate Theorems 1 and 2. Let φ : R → R

be a measurable, nonlinear function, and suppose for simplicity that the range of φ is

bounded. Let {εi} be i.i.d. with Eεi = 0 and E|εi|
2 log2(1 + |εi|

2) < ∞. Let X0 be any

random variable independent of {εi} and for t ≥ 1 define Xt via the recursion

Xt = φ(Xt−1) + εt−1

Then X = {Xt} is a (possibly non-stationary) nonlinear AR(1) process. Under the squared

loss, the Bayes prediction scheme for X is given by B(Xt−1) = φ(Xt−1). By Theorem 1,

B is Cesaro optimal for X and, as expected, the limiting average cumulative loss of any

scheme is bounded below by limn Ln(B,X) = Eε2i . Theorem 2 implies that if F is any

Cesaro optimal prediction scheme for X, then n−1
∑n

t=1(F (Xt−1) − φ(Xt−1))
2 → 0 with

probability one.

4 Two Extensions

4.1 Generalized Prediction

In the generalized prediction problem, the goal is to determine from past observations the

value of a known function of the next observation, rather than the next observation itself.

Let g : R → R, and let X = X1,X2, . . . ∈ R be a given stochastic process. Suppose that,

having observed X1, . . . ,Xt−1, we wish to predict the value of g(Xt) in such a way as to

minimize the long run average p’th power loss. The prediction problem considered above

corresponds to the special case where g(x) = x. In the generalized prediction problem, the

average performance of a prediction scheme F : R
∗ → R over n time units is given by

Lg
n(F,X) =

1

n

n
∑

t=1

|g(Xt) − F (Xt−1)|p.

A prediction scheme G is Cesaro optimal for (X, g) if

lim inf
n→∞

[Lg
n(F,Xn) − Lg

n(G,Xn)] ≥ 0 wp1

for every measurable prediction scheme F . Fix g : R → R and p > 1, and let X be a

real-valued process such that
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(A1’) supt≥1Eψ(|g(Xt)|
p) < ∞ where ψ(u) = u log2(1 + u) .

(A2’) lim supn n
−1
∑n

t=1 φ(|g(Xt)|
p) < ∞ for some function φ such that

φ(x)/xր ∞ as xր ∞.

The generalized Bayes prediction scheme for (X, g) under ℓp is defined by

Bg(Xt−1) = arg min
a∈R

E[ |g(Xt) − a|p |Xt−1 ]. (7)

The next result is an extension of Theorems 1 and 2 to the problem of generalized prediction.

Its proof is vitually the same, so we omit the details.

Theorem 3 If (A1’) and (A2’) hold then the generalized Bayes scheme (7) is Cesaro op-

timal for (X, g) under ℓp. Let F be any Cesaro optimal prediction scheme for (X, g) under

ℓp. If p ≥ 2 then n−1
∑n

t=1 |Ft − Bg
t |

p → 0 with probability one. If 1 < p < 2 then

n−1
∑n

t=1 |Ft −Bg
t |

q → 0 with probability one for all 1 ≤ q < p.

4.2 Prediction from Observations with Additive Noise

Suppose now that p = 2. Here we consider a variant of the prediction problem in which

the forecaster does not have direct access to the values of the process X, but to noisy

observations of the form

Yt = Xt +Nt t ≥ 1, (8)

where N = N1, N2, N3, . . . are zero mean random variables, defined on the same probability

space as X. In particular, we assume that

(N1) N and X are independent;

(N2) N is a martingale difference sequence, i.e., E(Nt |N
t−1
1 ) = 0 wp1 for t ≥ 1;

(N3) supt≥1Eψ(|Nt|
2) < ∞, where ψ(u) = u log2(1 + u).

Let Y = Y1, Y2, . . . be the available sequence of noisy observations; it follows from (A1) and

(N3) that supt≥1Eψ(|Yt|
2) < ∞. Suppose that the performance of a scheme F : R

∗ → R

over n time units is measured by its average squared loss:

L̃n(F ) = L̃n(F,X,Y) =
1

n

n
∑

t=1

(Xt − F (Y t−1))2.

A prediction scheme G will be called Cesaro optimal for (X,Y) if for every (measurable)

prediction scheme F ,

lim inf
n→∞

[

L̃n(F ) − L̃n(G)
]

≥ 0 wp1.
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Under the squared loss, the Bayes prediction scheme for X based on Y is given by the

conditional expectation B̃(Y t−1) := E[Xt |Y
t−1 ]. One may establish using (N1) and (N2)

that E[Nt |Y
t−1 ] = 0, and therefore B̃(Y t−1) = E[Yt |Y

t−1 ] for each t ≥ 1. Thus B̃

coincides with the Bayes prediction scheme B for Y under ℓ2.

In recent work Weissman and Merhav [42, 43] studied prediction of individual and

ergodic binary sequences in the presence of noise under a variety of loss functions. In

[42] they exhibited Cesaro optimal schemes for several different noise models when the

joint process of clean and noisy observations is ergodic and satisfies a conditional mixing

condition. For additive noise satisfying (N1)-(N3), the existence and uniqueness of Cesaro

optimal prediction schemes holds under very general conditions.

Proposition 1 Suppose that (N1)-(N3) hold, and that (A1)-(A2) hold with p = 2. Then

the Bayes scheme B̃ is Cesaro optimal for (X,Y). If F is any other Cesaro optimal pre-

diction scheme for (X,Y), then n−1
∑n

t=1 |Ft − B̃t|
2 → 0 with probability one.

Proof: The proof follows that of Theorem 1. Let F be any prediction scheme and fix

c > 0. Define Ft = F (Y t−1), F ′
t = Ft I{|Ft| ≤ c}, and let Bt = B̃(Y t−1) = B(Y t−1). By

arguments like those leading to (3) above, one finds that

lim inf
n→∞

[ L̃n(F ) − L̃n(B̃) ]

≥ lim inf
n→∞

[ L̃n(F ′) − L̃n(B̃) ] − lim sup
n→∞

1

n

n
∑

t=1

|Xt|
p I{|Xt| > c/3} wp1. (9)

Consider the first term on the right hand side of (9). A simple calculation shows that

(Xt − F ′
t)

2 − (Xt −Bt)
2 = (Yt − F ′

t )
2 − (Yt −Bt)

2 + 2NtF
′
t − 2NtBt.

Thus, as B̃ = B,

L̃n(F ′) − L̃n(B̃) = Ln(F ′) − Ln(B) +
2

n

n
∑

t=1

NtF
′
t −

2

n

n
∑

t=1

NtBt. (10)

Since ψ(|NtBt|) ≤ ψ(2|Nt|
2)+ψ(2|Bt|

2), assumption (N3) and part (c) of Lemma 2 together

ensure that supt≥1Eψ(|NtBt|) is finite. By Lemma A,

1

n

n
∑

t=1

NtBt −
1

n

n
∑

t=1

E[NtBt |X
t−1
1 , N t−1

1 ] → 0 wp1.

Assumptions (N1)-(N2) imply that E[NtBt |X
t−1
1 , N t−1

1 ] = BtE[Nt |X
t−1
1 , N t−1

1 ] = 0, so

n−1
∑n

t=1NtBt → 0 with probability one. A similar argument shows that n−1
∑n

t=1NtF
′
t →

0 with probability one. As B is Cesaro optimal for Y, it follows from (10) that

lim inf
n→∞

[ L̃n(F ′) − L̃n(B̃) ] = lim inf
n→∞

[Ln(F ′) − Ln(B) ] ≥ 0

10



In conjunction with (9), the last inequality implies that

lim inf
n→∞

[ L̃n(F ) − L̃n(B̃) ] ≥ − lim sup
n→∞

1

n

n
∑

t=1

|Xt|
p I{|Xt| > c/3} wp1.

The optimality of B̃ follows by letting c → ∞. The proof of uniqueness is similar to that

of Theorem 2 and is omitted.

5 Other Forms of Optimality

To be Cesaro optimal, the average performance of a prediction scheme must dominate or

equal that of any competing scheme in the limit of increasing observations. We describe here

two other forms of optimality that have also received attention in the literature. Both forms

are essentially stronger than Cesaro optimality, in that they apply stronger competitive

criteria. In each case, under suitable assumptions, the Bayes scheme is optimal and is

unique in an appropriate sense.

5.1 Strong Optimality

Strong optimality, like the notion of calibration discussed in Section 6 below, is defined in

terms of place selection schemes.

Definition: A measurable place selection scheme is a binary valued function S : R
∗ →

{0, 1} such that, for each j ≥ 1, the restriction of S to j-tuples x1, . . . , xj is a measurable

function from R
j to {0, 1}.

Let X = X1,X2, . . . ∈ R be a given stochastic process. Each place selection scheme S

selects a random subsequence Xt1 ,Xt2 , . . . of X, where t1 = min{t ≥ 1 : S(Xt−1) = 1},

and tk = min{t > tk−1 : S(Xt−1) = 1} for k ≥ 2. By definition, the inclusion of Xt in the

subsequence depends only on the previous values Xt−1 of the process. One way of assessing

the performance of a prediction scheme F on X is to evaluate the difference, at each selected

time tk, between the prediction F (Xtk−1) and the observed value Xtk .

Definition: A decision scheme G is strongly optimal for a bounded process X under ℓp if

for every decision scheme F , and every measurable selection scheme S,

lim inf
n→∞

[ ∑n
t=1 S(Xt−1) ℓp(F (Xt−1),Xt)

∑n
s=1 S(Xs−1)

−

∑n
t=1 S(Xt−1) ℓp(G(Xt−1),Xt)

∑n
s=1 S(Xs−1)

]

≥ 0

almost surely on the event A(X, S) =
{
∑∞

t=1 S(Xt−1) = ∞
}

that S selects an infinite

subsequence of X.

11



Strong optimality was introduced in an equivalent form by Dawid [13] as a means of

assessing the empirical validity of a prediction scheme that is applied to an individual

binary sequence. To avoid pathologies arising in the individual sequence setting, he restricts

attention to computable selection schemes and computable prediction rules. For a given

stochastic process, such pathologies occur with probability zero, and there is no loss in

considering measurable selection schemes and prediction rules, provided that one is satisfied

with almost sure results. Analysis of strong optimality relies on the following analog of

Lemma A. For a proof and discussion, see Dawid [11].

Lemma B Let X1,X2, . . . be any process taking values in R and let Z1, Z2, . . . ∈ R be

random variables such that Zt is a measurable function of X1, . . . ,Xt. If there is a constant

L <∞ such that |Zt| ≤ L with probability one for each t ≥ 1, then
∑n

t=1 S(Xt−1) (Zt − E(Zt|X
t−1))

∑n
s=1 S(Xs−1)

→ 0

almost surely on A(X, S).

The next proposition may be established using Lemma B and arguments similar to

those for Theorems 1 and 2. It should be noted that its conclusions do not imply those of

Dawid [13] in the setting of computable prediction schemes, and conversely. Uniqueness of

computable schemes for individual binary sequences is established in Theorem 7.1 of [13].

Proposition 2 Let X be a bounded process and p > 1. The Bayes scheme B is strongly

optimal for X, and if F is any other strongly optimal scheme for X, then |F (Xt−1) −

G(Xt−1)| → 0 with probability one.

5.2 Efficiency

Another notion of predictive optimality is that of efficiency, considered by Skouras and

Dawid [38] (see also [12, 39]).

Definition: A prediction scheme F is efficient for a process X under ℓp if for every mea-

surable decision scheme G

lim sup
n→∞

[

n
∑

t=1

|Xt − F (Xt−1)|p −
n
∑

t=1

|Xt −G(Xt−1)|p

]

< ∞ (11)

with probability one.

A multivariate version of the following result appears in Theorem 1 of [38] and sub-

sequent remarks. As noted there, the case p 6= 2 remains open. Let Var(Xt|X
t−1) =

E[ (Xt −E(Xt |X
t−1))2 | Xt−1] be the conditional variance of Xt given Xt−1.

12



Theorem A Under the squared loss, the Bayes scheme B is efficient for X if supt≥1 Var(Xt|X
t−1)

is finite with probability one; in particular, (11) holds almost surely on the event where the

supremum is finite. If F is any other efficient prediction scheme for X, then
∑∞

t=1(B(Xt−1)−

F (Xt−1))2 is finite with probability one.

For bounded processes with squared error, the comparative strengths of different forms

of optimality follow readily from their relation to the Bayes scheme.

Proposition 3 If X is bounded then, under the squared loss, efficiency implies strong op-

timality, and strong optimality implies Cesaro optimality.

6 Optimal Prediction and Calibration

6.1 Cesaro Optimality and Weak Calibration

Recall from Section 5 that a place selection scheme S selects a subsequence of a given

process in a non-anticipating manner. Motivated by Dawid [13], we make the following

definition.

Definition: A prediction scheme F is first order calibrated to X if for every measurable

selection scheme S,

lim
n→∞

1

n

n
∑

t=1

S(Xt−1) (F (Xt−1) −Xt) = 0 (12)

with probability one. A scheme F is second order calibrated to X if for every measurable

selection scheme S,

lim sup
n→∞

1

n

n
∑

t=1

S(Xt−1) (F 2(Xt−1) −X2
t ) ≤ 0 (13)

with probability one.

The definition above is weak in the sense that the averages in (12) and (13) are taken

with respect to the time scale of the original process, rather than that of the subsequence

Xt1 ,Xt2 , . . .. Note however that the relation (12) implies that
∑n

t=1 S(Xt−1) (F (Xt−1) −Xt)
∑n

s=1 S(Xs−1)
→ 0

almost surely on the event {lim infn n
−1
∑n

t=1 S(Xt−1) > 0}, i.e. when the selected times

t1, t2, . . . occupy a non-negligible fraction of the positive integers. Similar remarks apply to

the relation (13). The following proposition is proved in Section 10
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Proposition 4 Under assumptions (A1) and (A2), a prediction scheme F is Cesaro opti-

mal for X under ℓ2 if and only if F is first and second order calibrated to X.

6.2 Strong Optimality and Strong Calibration

For bounded processes, one may strengthen in a natural way the notion of calibration

studied above by requiring that the convergence in (12) hold whenever S selects any infinite

subsequence of X.

Definition: A decision scheme F is strongly calibrated to X if, for every measurable

selection scheme S,
∑n

t=1 S(Xt−1)(F (Xt−1) −Xt)
∑n

s=1 S(Xs−1)
→ 0

almost surely on the event A(X, S) =
{
∑∞

t=1 S(Xt−1) = ∞
}

.

Strong calibration was introduced in [13] for individual binary sequences. The next

proposition may be established using Lemma B and arguments like those for Proposition

4. An analogous result for individual binary sequences is given in Theorem 8.1 of [13].

Proposition 5 A prediction scheme F is strongly optimal for a bounded process X under

the squared loss if and only if it is strongly calibrated to X.

7 Threshold Prediction of Binary Processes

Here we establish a connection between the prediction of binary processes under the

squared and Hamming loss functions. Let X = X1,X2, . . . be a process with values Xi ∈

{0, 1}. To take a popular example, suppose that X is a binary record of rainfall at a specific

location, with Xi = 1 if it rains on the i’th day, and Xi = 0 otherwise. Under the square

loss ℓ2, the predictions of the Bayes scheme B are the conditional probabilities

B(Xt−1) = E(Xt |X
t−1) = P (Xt = 1 |Xt−1) ∈ [0, 1].

A decision scheme F : R
∗ → R models the predictions of a weather forecaster who, on each

day t− 1, predicts the conditional probability of rain on day t by F (Xt−1) and incurs loss

(F (Xt−1) −Xt)
2 when the value of Xt is revealed.

Now suppose that a forecaster employing a decision scheme F with values in R is re-

stricted to make binary predictions of the form “tomorrow it will rain” or “tomorrow it will

not rain”, and that he incurs loss 0 or 1 depending on whether his prediction is correct or not.
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This is a discrete version of the prediction problem with Hamming loss ℓH(u, v) = I{u 6= v}.

In this case the Bayes decision scheme is given by

B̌(Xt−1) = arg min
u∈{0,1}

P (Xt 6= u |Xt−1) = I{B(Xt−1) > 1/2} (14)

and is obtained by thresholding the Bayes scheme under ℓ2 at 1/2. One may readily show

that B̌ is Cesaro optimal for X. In light of (14), it is natural for the forecaster to employ

the threshold scheme

F̌ (Xt−1) = I{F (Xt−1) > 1/2}

in order to predict the next value of X based on his conditional probability estimates F .

In fact, the Cesaro optimality of F implies that of F̌ . A version of the following result for

ergodic processes was established independently in [22].

Theorem 4 Let X = X1,X2, . . . be any binary process. If F is Cesaro optimal for X under

the squared loss, then the threshold prediction scheme F̌ is Cesaro optimal for X under the

Hamming loss.

Proof: Let B and B̌ be as above. It can be shown (see e.g. the proofs of Theorems 2.1 and

2.2 in [15]) that for each t ≥ 1,

P (F̌t 6= Xt |X
t−1) ≤ P (B̌t 6= Xt |X

t−1) + 2 |Ft −Bt|. (15)

Fix any binary-valued prediction scheme Ȟ : {0, 1}∗ → {0, 1} and let Ȟt = Ȟ(Xt−1). We

wish to establish that

lim inf
n→∞

[

Ln(Ȟ) − Ln(F̌ )
]

= lim inf
n→∞

1

n

n
∑

i=1

(I{Ȟt 6= Xt} − I{F̌t 6= Xt}) ≥ 0 wp1.

By Lemma A it suffices to show that

lim inf
n→∞

1

n

n
∑

i=1

[P (Ȟt 6= Xt |X
t−1) − P (F̌t 6= Xt |X

t−1) ] ≥ 0 wp1. (16)

Inequality (15) and equation (14) imply that

P (Ȟt 6= Xt |X
t−1) − P (F̌t 6= Xt |X

t−1) ≥ −2 |Ft −Bt|,

and (16) follows, since n−1
∑n

i=1 |Ft −Bt| → 0 by Theorem 2.

A straightforward modification of the preceding proof, substituting Lemma B for Lemma

A, yields the following result.

Theorem 5 Let X = X1,X2, . . . be any binary process. If F is strongly optimal for X

under the squared loss, then the threshold prediction scheme F̌ is strongly optimal for X

under the Hamming loss.
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8 Aggregating Decision Schemes

Consider again the general prediction problem described in the introduction, now with

the goal of constructing a prediction scheme that is Cesaro optimal, under the p’th power

loss, for a given family X of stochastic processes satisfying (A1) and (A2). (Recall that

a prediction scheme F is Cesaro optimal for a family of processes if it is Cesaro optimal

for every member of the family; analogous definitions hold for other forms of optimality.)

It is clear from the definition that the Bayes scheme B for a given process X ∈ X will

generally not be Cesaro optimal for a different process X′ ∈ X . Skouras and Dawid [38]

use a Bayesian approach to combine the Bayes predictors for a given parametric family of

processes X = {Xθ : θ ∈ Θ} with Θ ⊆ R
d. For suitable families X , they use a positive prior

π on Θ to construct prediction schemes efficient for (Lebesgue) almost every member of the

family. In particular, their prediction scheme is Cesaro optimal under ℓ2 for almost every

member of a parametric family of bounded processes. Nevertheless, one may readily verify

that no decision scheme is Cesaro optimal under ℓp for the family of all processes satisfying

(A1) and (A2). The same conclusion holds if we restrict attention to bounded, or binary,

processes. (Given any prediction scheme F , define recursively a sequence x = x1, x2, . . . ∈

{0, 1} such that |F (xt−1) − xt| ≥ 1/2 for each t ≥ 1. If X = x with probability one, then

Ln(F,X) ≥ 1/2 for every n, whereas the cumulative loss of the Bayes scheme for X is equal

to zero.)

In the absence of “universal” schemes, one useful way to assess the quality of a given

prediction scheme is to compare, for each process X ∈ X , the asymptotic performance of

that scheme with the best asymptotic performance among a finite or countable family F of

competing schemes. In this way attention shifts from absolute to comparative measures of

performance. A central problem in the comparative framework is how to construct a single

scheme that competes favorably with every member of a given family F on a wide variety of

processes. In many cases, this may be accomplished by suitably combining, or aggregating,

the decisions of the individual schemes in F . Aggregating methods, and corresponding

bounds on the difference between the loss of an aggregate scheme and that of the best

scheme in the family, have been established in a variety of settings. Representative work

and further references can be found in [41, 17, 27, 10, 9, 25]. Foster and Vohra [19] give

an account of the aggregating problem and its history, and Merhav and Feder [28] give an

overview of prediction from individual sequences. In recent work, Weissman and Merhav

[43] established finite sample aggregation bounds for the prediction of individual binary
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sequences observed in additive, independent noise, under p’th power loss, with 1 ≤ p ≤ 2.

Here we describe an aggregating method for prediction schemes that is based on weighted

majority techniques [41, 27, 8] for predicting individual binary sequences. Fix a countable

family F = {F (1), F (2), . . .} of prediction schemes and let p > 1. Assume that each scheme

F (r) in F is bounded, in the sense that

|F (r)| := sup
t≥1

sup
xt−1

|F (r)(xt−1)| < ∞.

Let Fj = {F (r) : 1 ≤ r ≤ 2j} contain the first 2j prediction schemes in F , and let

x1, x2, . . . ∈ R. For j ≥ 0 and 2j ≤ t < 2j+1 define

F̃ (xt−1) =
∑

F∈Fj

wt(F )F (xt−1) (17)

to be a weighted sum of the predictions made by schemes F ∈ F j at time t, with weights

given by

wt(F ) =
exp{−cj

∑t−1
s=2j ℓp(F (xs−1), xs) }

∑

F ′∈Fj
exp{−cj

∑t−1
s=2j ℓp(F ′(xs−1), xs) }

cj = 2−j+j1/2

. (18)

Note that for 2j ≤ t < 2j+1 the weight assigned to a scheme F ∈ Fj at time t depends on

the cumulative loss of its predictions from time 2j to time t− 1. When t = 2j , each F ∈ Fj

has equal weight wt(F ) = |Fj |
−1 = 2−j . A related weight assignment was used in [24] and

more recently in [43] to combine binary predictors.

The next proposition shows that, for suitable processes X, the long run average average

loss of F̃ is less than or equal to the long run average loss of every scheme in F . The proof

is given in Section 10.3. Foster [18] established an analogous result for bounded processes

under the squared loss using a recursive construction.

Proposition 6 Suppose that |F (r)| = O(r(1−δ)/2p) for some δ > 0. Let X = X1,X2, . . .

be any stochastic process such that (i) supt≥1E|Xt|
q is finite for some q > p, and (ii)

lim supn n
−1
∑n

t=1 |Xt|
p is finite with probability one. Then with probability one,

lim sup
n→∞

Ln(F̃ ,X) ≤ lim sup
n→∞

Ln(F,X) ∀F ∈ F (19)

and

lim inf
n→∞

[

Ln(F,X) − Ln(F̃ ,X)
]

≥ 0 ∀F ∈ F (20)

Remark: Given any countable family F = {F (r)} of bounded prediction schemes, one

may ensure, by replicating schemes F (r) as necessary, that the growth condition |F (r)| =
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O(r(1−δ)/2p) is satisfied. Thus the conclusions of Proposition 6 will hold for any such family.

For bounded processes under the squared loss one can exhibit aggregate prediction schemes

H̃ such that

Ln(H̃,X) ≤ inf
F

[

Ln(F,X) +
c lnπ(F )

n

]

n = 1, 2, . . . wp1 (21)

where c is a universal constant and π(·) is a prior distribution on the elements of F (c.f.

[22]). The proof of Proposition 6 relies on a weaker, but more general, inequality of this

sort, that is based on arguments of Cesa-Bianchi [8] (see Lemma 3 below).

9 Sequential Prediction of Ergodic Processes

Let X be a random variable, defined on a probability space (Ω,S, P ), with E|X|p <∞.

For each sub-sigma field S ′ ⊆ S define

πp(X|S ′) = arg min
a∈R

E[ |X − a |p | S ′ ]. (22)

The definition ensures that πp(X|S ′) is an S ′-measurable random variable, and that E|X −

πp(X|S ′)|p ≤ E|X − Y |p for any S ′-measurable random variable Y . Thus πp(X|S ′) is

the natural Lp-projection of X onto the family of S ′-measurable random variables. The

properties of such projections were studied by Ando and Amemiya [1], who established the

following result.

Theorem B If S1 ⊆ S2 ⊆ · · · are increasing sub-sigma fields of S with limit S∞ =

σ(∪k≥1Sk), then the following relations hold:

(a) πp(X|Sk) → πp(X|S∞) with probability one;

(b) E[ supk≥1 |πp(X|Sk)|
p ] ≤ γ E|X|p for some constant γ = γ(p) <∞.

Remark: As an alternative to the approach in [1], one may establish (a) using the definition

(22) and the fact that, with probability one, fk(a) = E[ |X − a|p | Sk ], k ≥ 1, are convex

functions converging pointwise in a (and hence uniformly on bounded intervals) to the

convex function f∞(a) = E[ |X−a|p | S∞ ]. Part (b) of the theorem shows that the expected

value of the supremum is finite. Under the stronger moment assumptions made here, this

may be established by more direct arguments. Indeed, by an obvious extension of Lemma

2,

sup
k≥1

|π(X|Sk)|
p ≤ 2p sup

k≥1
E[ |X|p | Sk ].
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Moreover {E[ |X|p | Sk ] : k ≥ 1} is a uniformly integrable martingale that converges with

probability one, and in expectation, to the integrable random variable E[ |X|p | S∞ ]. It

follows from the maximal inequality for submartingales and standard bounds (see Theorems

3.2 and 3.4’ of Doob [16]) that E(supk≥1E[ |X|p | Sk ]) is finite if E |X|p log(1 + |X|p) is

finite.

Using Theorem B and Breiman’s ergodic theorem, one may give a simple characteriza-

tion of Cesaro optimal prediction schemes for ergodic processes in terms of their limiting

average loss, without reference to competing prediction schemes. This characterization is

given in the next proposition, which can be deduced from the results of Algoet [2]. We

sketch a more direct, simpler proof for completeness. By standard arguments (c.f. Breiman

[7], Chapter 6) we may assume without loss of generality that any ergodic process X un-

der consideration has a doubly infinite time index, and is defined on a probability space

(Ω,S, P ), where Ω consists of all doubly infinite sequences of real numbers, S is generated

by finite dimensional cylinder sets, and Xi(ω) = wi for each −∞ < i <∞ and each ω ∈ Ω.

Proposition 7 Let X = {Xi : −∞ < i < ∞} be a stationary ergodic process such that

E |X0|
p log2(1 + |X0|

p) < ∞. A prediction scheme F is Cesaro optimal for X under ℓp if

and only if

Ln(F,X) → L∗(X) = E|X0 − πp(X0|X
−1
−∞) |p wp1, (23)

where πp(X0|X
−1
−∞) = πp(X0|σ(X−1,X−2, · · · )). The optimal limiting average loss can also

be written as

L∗(X) = inf
k≥1

inf
fk

E|Xk+1 − fk(X
k
1 )|p, (24)

where the second infimum is over all bounded, uniformly continuous functions fk : R
k → R.

Proof: Theorem 1 and relation (4) imply that F is Cesaro optimal for X if and only

Ln(F ) − Ln(B) → 0 with probability one, where B is the Bayes scheme for X under ℓp.

Thus to establish (23) it suffices to consider the case F = B. Note that

Ln(B,X) =
1

n

n
∑

t=1

|πp(Xt|X
t−1
1 ) −Xt|

p =
1

n

n
∑

t=1

|πp(X0|X
−1
−t+1) −X0|

p ◦ T t

where T : Ω → Ω is the left shift operator. By assumption, T is P -preserving and ergodic.

Thus (23) will follow from the last expression and Breiman’s generalized ergodic theorem

(see [2] for a proof) if (a) |X0 − πp(X0|X
−1
−t )|p → |X0 − πp(X0|X

−1
−∞)|p with probability

one as t → ∞, and (b) E(supt≥1 |X0 − πp(X0|X
−1
−t )|p) < ∞. Both these relations follow
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immediately from Theorem B. To establish (24), note that (a)-(b) and the dominated

convergence theorem imply that

L∗(X) = E|X0 − πp(X0|X
−1
−∞) |p = lim

k→∞
E|X0 − πp(X0|X

−1
−k) |p.

By definition of πp(·|·), the k’th term in the limit is equal to

E|X0 − πp(X0|X
−1
−k) |p = inf

fk

E|X0 − fk(X−1, . . . ,X−k)|p,

where the infimum is over all measurable functions fk : R
k → R. These expectations are

decreasing in k, and equation (24) follows as bounded, uniformly continuous functions are

dense in Lp(X−1, . . . ,X−k).

9.1 Universal Prediction Schemes for Ergodic Processes

Recall that a decision scheme F is Cesaro optimal for a family X of processes if it is

Cesaro optimal for every process X ∈ X . Algoet [2] established the existence of Ce-

saro optimal schemes for families of ergodic processes in the general setting of sequential

decision problems. His schemes are derived from estimates P̂ (Xt−1) of the conditional

probabilities P (Xt|X
t−1) with the property that P̂ (X−1, . . . ,X−t) converges weakly to

P (X0|X−1,X−2, . . .) with probability one for every ergodic process. (For more on such

estimates, see [3, 30].) Specialized to the setting of this paper, the results of [2] establish

that, for every p > 1 and every M < ∞, there exist Cesaro optimal schemes under ℓp

for the family of all ergodic processes with values in [−M,M ]. Below we describe predic-

tion schemes H̃ that are Cesaro consistent for unbounded ergodic processes, under rela-

tively weak moment conditions. The schemes here are based on the elementary aggregating

method described in the previous section, and avoid the use of conditional probability esti-

mates. Modha and Masry [29] exhibited in-probability consistent estimates of E(X0|X
−1
−∞)

for bounded, alpha-mixing processes for which the mixing coefficients decay at a known

exponential rate. Under additional conditions, they established rates of convergence for

estimates of E(X0|X
−1
−k) when X has finite memory k.

Let π1 ≥ π2 ≥ · · · be a nested sequence of finite partitions of R whose constituent cells

shrink, in the sense that for each x ∈ R,

lim
r→∞

diam(πr[x]) = 0. (25)

Here πr[x] is the unique cell of πr containing x, and diam(A) = supu,v∈A |u− v| denotes the

maximum distance between any two points in A. As πr is finite, it must necessarily have
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unbounded cells. However, the condition (25) ensures that the sequence of cells containing

a fixed point x ∈ R will eventually shrink down to x. The partition πr may be obtained,

for example, by dividing [−r, r) into intervals of length 2−r, and letting the complement of

[−r, r) comprise a single cell.

Fix p > 1 and 0 < δ < 1. For each k ≥ 1 define a k’th order Markov prediction scheme

H(k) as follows. For t ≤ k + 1, set H(k)(xt−1) = 0; for t ≥ k + 2 and each x1, . . . , xt−1 ∈ R

let

H(k)(xt−1) = arg min
−ak≤u≤ak

t−1
∑

s=k+1

ℓ(u, xs) I{xs−1 ∈ πk[xt−1], . . . , xs−k ∈ πk[xt−k]},

where ak = k(1−δ)/2p. To understand the definition, let us say that a k-match occurs at

position s if the k vectors preceding xs lie in the same cells of πk as the k vectors preceding

xt. Then H(k)(xt−1) is the element u ∈ R that minimizes the sum of the losses ℓ(u, xs)

occurring at the k-match positions s ≤ t − 1. Note that as k increases the predictions of

H(k) are based on longer and more precise matches. Prediction schemes analogous to H(k)

are briefly discussed by Algoet [2]; similar, randomized, schemes were proposed in [24] for

the prediction of binary processes. Note that no randomization is required in the present

setting. The proof of the following theorem is given in Section 10.4.

Theorem 6 Let H̃ be the aggregate prediction scheme derived from H = {H(k) : k ≥ 1}

via (17)-(18). Then H̃ is Cesaro optimal under the p’th power loss for any ergodic process

X such that E|X1|
q <∞ for some q > p.

The existence of Cesaro optimal schemes for general, bounded loss functions was estab-

lished by Algoet [2]. In Theorem 8 of [4], a Cesaro optimal schemes for bounded processes

under the squared error is described, and the possible consistency of the scheme for un-

bounded processes is briefly discussed. Using aggregation bounds of the form (21), Györfi

and Lugosi [22] have independently established the Cesaro optimality of a prediction scheme

similar to H̃ for bounded processes under the squared loss. They also consider the Cesaro

optimality of prediction schemes based on generalized linear estimates, and obtain rates

of convergence for predicting Gaussian processes. The results of [2, 4, 22] on Cesaro op-

timal prediction assume boundedness of the loss function, or that the Xi take values in a

prespecified bounded interval. No such assumptions are made in Theorem 6.
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9.2 Strongly Optimal Schemes for Ergodic Processes

For A ⊆ R let E(A) be the family of ergodic processes X taking values in A. If A is

bounded then the aggregate scheme H̃ defined in the previous section is Cesaro optimal for

E(A) under ℓp. By contrast, no prediction scheme is strongly optimal for E(A) under the

squared loss if A has more than one elements. To illustrate this, let E({0, 1}) be the family

of all binary ergodic processes, and let ℓ2(u, v) = (u − v)2 be the squared loss. For each

X ∈ E({0, 1}) the corresponding Bayes scheme is of the form B(xt−1) = P (Xt = 1|Xt−1 =

xt−1). If F is strongly optimal for E({0, 1}), then it follows from Proposition 2 that for

every binary ergodic process X,

|F (Xt−1) − P (Xt = 1|Xt−1)| → 0 wp1.

However, it is known [6, 37, 23] that no such ”on-line” estimation scheme exists. Therefore

no prediction scheme is strongly optimal for E({0, 1}), and by the same reasoning, no

prediction scheme is strongly optimal under the squared loss for E(A) if A has cardinality

greater than one. A similar negative conclusion holds for efficient prediction schemes.

9.3 Properties of Universal Schemes under Squared Loss

Throughout this section let H∗ be the aggregate prediction scheme derived via (17)-(18)

from the Markov schemes H = {H(k) : k ≥ 1} under the squared loss. Theorem 6 ensures

that H∗ is Cesaro optimal for every ergodic process X such that E|X0|
q < ∞ for some

q > 2. Let X be any such process. By Theorem 2 one has

1

n

n
∑

t=1

(H∗(Xt−1) − E(Xt|X
t−1))2 → 0 wp1. (26)

(This same property is derived for bounded processes in [22] by different arguments.) More-

over, Proposition 7 ensures that

1

n

n
∑

t=1

(H∗(Xt−1) −Xt)
2 → E(X0 − E(X0|X

−1
−∞))2 wp1.

Suppose now that N = {Ni : −∞ < i <∞} are i.i.d., zero-mean random variables that are

independent of X, and satisfy E|N0|
q <∞. Let Yi = Xi+Ni, −∞ < i <∞, be observations

of X corrupted by additive noise. If H∗(Y t−1) is used to predict the “clean” value Xt, then

the limiting average cumulative loss of H∗ has a natural form. Related results for binary

processes X under more general loss functions can be found in [42].
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Proposition 8 If X and N are as above then

1

n

n
∑

t=1

(H∗(Y t−1) −Xt)
2 → E(X0 − E(X0 |Y

−1
−∞))2 wp1.

Proof: Let H∗
t = H∗(Y t−1) and let Bt = E(Yt |Y

t−1) = E(Xt |Y
t−1). By Theorem 2,

n−1
∑n

t=1(H
∗
t − Bt)

2 → 0. Using this fact and the Cauchy-Schwartz inequality, one may

readily show that
∣

∣

∣

∣

∣

1

n

n
∑

t=1

(H∗
t −Xt)

2 −
1

n

n
∑

t=1

(Bt −Xt)
2

∣

∣

∣

∣

∣

→ 0 wp1.

It follows from Breiman’s ergodic theorem, or alternatively by arguments similar to those

in the proof of Proposition 1, that n−1
∑n

t=1(Bt − Xt)
2 → E(X0 − E(X0 |Y

−1
−∞))2 with

probability one.

An interesting question, which has received some attention in the literature, is how to

estimate the conditional expectation E(X0 |X
−1
−∞) from observations X−1,X−2, . . . of an

ergodic process X = {Xi : −∞ < i <∞}. Ornstein [33] described almost surely consistent

estimates for binary processes; the case of bounded, real valued processes was studied by

Algoet [3] (see also [30, 31]), the final word being [4]. The prediction scheme H∗ yields

estimates of E(X0 |X
−1
−∞) that are consistent in the weaker, expectation sense.

Proposition 9 If X = {Xi : −∞ < i <∞} is bounded and ergodic, then the estimate

φ(X−1
−n) =

1

n

n−1
∑

t=0

H∗(X−1
−t )

converges in probability to E(X0 |X
−1
−∞) as n→ ∞.

Proof: Let B(Xt−1) = E(Xt|X
t−1) be the Bayes prediction scheme for X. The identity

B(X−1
−t ) = E(X0|X

−1
−t ) and the martingale convergence theorem imply that φ̃(X−1

−n) =

n−1
∑n−1

t=0 B(X−1
−t ) converges in expectation to E(X0 |X

−1
−∞). Thus it suffices to show that

E|φ(X−1
−n) − φ̃(X−1

−n)| → 0. However, this expectation is at most

1

n

n
∑

t=1

E|H∗(X−1
t ) −B(X−1

−t )| =
1

n

n
∑

t=1

E|H∗(Xt−1
1 ) −B(Xt−1

1 )|

= E

[

1

n

n
∑

t=1

|H∗(Xt−1
1 ) −B(Xt−1

1 )|

]

where the first equality follows from the stationarity of X. The final expectation above

tends to zero by Theorem 2 and the bounded convergence theorem.
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Now let E({0, 1}) be the family of binary ergodic processes. The calibration of H∗ and

Breiman’s ergodic theorem have the following elementary corollary. Let X ∈ E({0, 1}), and

suppose that p ∈ (0, 1) and ǫ > 0 are such that P{|E(X0|X
−1
−∞) − p| ≤ ǫ} > 0. Then the

ratio

γn(p, ǫ) =

∑n
t=1 I{|H

∗(Xt−1) − p | ≤ ǫ}Xt
∑n

s=1 I{|H
∗(Xs−1) − p | ≤ ǫ}

.

is such that

p− ǫ ≤ lim inf
n→∞

γn(p, ǫ) ≤ lim sup
n→∞

γn(p, ǫ) ≤ p+ ǫ.

Suppose again that X is the binary record of rainfall at some location. The inequalities

above show that if H∗ is used to predict the probability of rain on the next day then, among

those days for which H∗’s predicted probability of rain is near p, the fraction of days on

which it actually rained is also near p. In other words, H∗ is calibrated in the classical sense

(c.f. [32]). Note also that if Ȟ∗(Xt−1) = I{H∗(Xt−1) > 1/2} is the threshold prediction

scheme associated with H∗, then for each X ∈ E({0, 1}),

1

n

n
∑

t=1

I{Ȟ∗(Xt−1) 6= Xt} → Emin{P (X0 = 0|X−1
−∞), P (X0 = 1|X−1

−∞)} wp1

as Ȟ∗ is Cesaro optimal for X.

10 Additional Derivations

10.1 Proof of Theorem 2, Case 1 < p < 2.

Suppose now that 1 ≤ q < p < 2, and that F is a Cesaro optimal decision scheme for X

under ℓp. Let Bt = B(Xt−1). We claim that

(i) lim sup
n→∞

1

n

n
∑

t=1

|Bt|
p < ∞ (ii) lim sup

n→∞
Ln(B,X) < ∞ (iii) lim sup

n→∞

1

n

n
∑

t=1

|Ft|
p < ∞

Indeed, (i) follows from Lemma 2 and assumption (A2). Relation (ii) is a consequence

of (i) and (A2), and relation (iii) follows from (ii), (4), and the elementary inequality

|Ft|
p ≤ 2p−1(|Ft −Xt|

p + |Xt|
p). Suppose now that for some α > 0,

P

{

lim sup
n→∞

1

n

n
∑

t=1

|Ft −Bt|
q ≥ α.

}

> α. (27)

Let α1 = 3−(q+1)α. As q < p, relations (i) and (iii) imply that there exists c <∞ such that

lim sup
n→∞

1

n

n
∑

t=1

|Ft|
qI{|Ft| > c} < α1 and lim sup

n→∞

1

n

n
∑

t=1

|Bt|
qI{|Bt| > c} < α1. (28)
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Let F ′
t = |Ft|I{|Ft| ≤ c} and B′

t = |Bt|I{|Bt| ≤ c} be truncated versions of Bt and Ft,

respectively. Then (27) and (28) imply that

P

{

lim sup
n→∞

1

n

n
∑

t=1

|F ′
t −B′

t|
q ≥ α1

}

> α. (29)

As F ′
t and B′

t are bounded, it follows from (29) that for some α2 > 0,

P

{

lim sup
n→∞

1

n

n
∑

t=1

I{|F ′
t −B′

t| ≥ α2} > α2

}

> α.

Finally, (A2) and the last expression imply that for some c′ <∞ and α3 > 0,

P

{

lim sup
n→∞

1

n

n
∑

t=1

I{|F ′
t −B′

t| ≥ α3}I{|Xt| ≤ c′} > α3

}

>
α

2
. (30)

The continuity and strict convexity of f(u) = |u|p ensure that Γ(u− x, v− x) (see equation

(6) above) is positive for all values of u, v, x, and that Γ(u − x, v − x) ≥ β for some β > 0

on the compact set {(u, v, x) : |u− v| ≥ α3, |u|, |v| ≤ c, |x| ≤ c′}. It then follows from (30)

and inequality (5) that

lim inf
n→∞

[Ln(H) − Ln(B)] ≤ lim inf
n→∞

−β

n

n
∑

t=1

I{|F ′
t −B′

t| ≥ α3}I{|Xt| ≤ c′}

= −β lim sup
n→∞

1

n

n
∑

t=1

I{|F ′
t −B′

t| ≥ α3}I{|Xt| ≤ c′}

≤ −βα3

with positive probability. This contradicts the Cesaro optimality of B. Thus (27) fails to

hold for any α > 0, and the result follows.

10.2 Proof of Proposition 4

Let X satisfy (A1) and (A2). Under ℓ2 the Bayes prediction Bt is equal to E[Xt |X
t−1 ].

Two applications of Lemma A, with Zt = Xt and Zt = X2
t , show that B is first and

second order weakly calibrated to X. Suppose now that F is Cesaro optimal for X. Then
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Un = n−1
∑n

t=1(Ft −Bt)
2 → 0 by Theorem 2. Note that for each selection scheme S,

∣

∣

∣

∣

∣

1

n

n
∑

t=1

St(F
2
t −X2

t ) −
1

n

n
∑

t=1

St(B
2
t −X2

t )

∣

∣

∣

∣

∣

≤
1

n

n
∑

t=1

|F 2
t −B2

t |

≤

√

√

√

√

1

n

n
∑

t=1

(Ft −Bt)2 ·

√

√

√

√

1

n

n
∑

t=1

(Ft +Bt)2

≤ U1/2
n

√

√

√

√

2

n

n
∑

t=1

F 2
t +

2

n

n
∑

t=1

B2
t .

By arguments like those in the proof of Theorem 2 for the case 1 < p < 2, the time averages

of B2
t and F 2

t are bounded. Thus the final term above tends to zero with increasing n, and

the second order calibration of F follows from that of B. A similar argument shows that F

is first order calibrated to X.

Suppose now that F is first and second order calibrated to X. Note that B is Cesaro

optimal for X, and that

∣

∣

∣

√

Ln(F ) −
√

Ln(B)
∣

∣

∣
≤

√

√

√

√

1

n

n
∑

t=1

(Ft −Bt)2 ,

As F , B are second order calibrated to X, the sequences Ln(F ) and Ln(B) are bounded;

thus to establish the optimality of F it suffices to show that n−1
∑n

t=1(Ft − Bt)
2 → 0

with probability one. Application of inequality (13) to the selection schemes S′
t ≡ 1 and

S′′
t = I{|Ft| > c} shows that

lim sup
n→∞

1

n

n
∑

t=1

F 2
t <∞ , lim sup

n→∞

1

n

n
∑

t=1

F 2
t I{|Ft| ≥ c} ≤ lim sup

n→∞

1

n

n
∑

t=1

X2
t I{|Ft| ≥ c}.

Since X2
t I{|Ft| ≥ c} ≤ X2

t I{|Xt| ≥ c} + c2I{|Ft| ≥ c}, it follows from the last display,

assumption (A2) and Lemma 1 that

lim
c→∞

[

lim sup
n→∞

1

n

n
∑

t=1

F 2
t I{|Ft| ≥ c}

]

= 0 wp1.

This same relation holds for the Bayes scheme B, as B is second order calibrated to X.

Thus, for any given δ > 0, there exists c = c(δ) <∞ such that

lim sup
n→∞

1

n

n
∑

t=1

(Ft −Bt)
2 ≤ lim sup

n→∞

1

n

n
∑

t=1

(Ft −Bt)
2St + δ,
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where St
△

= I{max |Ft|, |Bt| ≤ c}. To establish the proposition, it is therefore enough to

show that for fixed c <∞, and St defined as above,

1

n

n
∑

t=1

(Ft −Bt)
2St → 0 wp1. (31)

As each term in the sum is uniformly bounded by 4c2, the relation (31) holds if only if for

every ǫ > 0 each of the events

A =

{

lim sup
n→∞

1

n

n
∑

t=1

St I{Ft −Bt ≥ ǫ} > 0

}

B =

{

lim sup
n→∞

1

n

n
∑

t=1

St I{Bt − Ft ≥ ǫ} > 0

}

has probability zero. Fix ǫ > 0, and define a new selection scheme S′
t = St · I{Ft −Bt ≥ ǫ}.

Then clearly

ǫ

n

n
∑

t=1

St I{Ft −Bt ≥ ǫ} =
ǫ

n

n
∑

t=1

S′
t ≤

1

n

n
∑

t=1

St(Ft −Bt).

Moreover, Lemma A and the first order calibration of F together imply that

lim sup
n→∞

1

n

n
∑

t=1

St(Ft −Bt) = lim sup
n→∞

1

n

n
∑

t=1

St(Ft −Xt) = 0 wp1.

Therefore P (A) = 0. A similar argument shows that P (B) = 0, and (31) holds as desired.

10.3 Proof of Proposition 6

Let F be a finite family of prediction schemes and let p > 1 be fixed. Given numbers

x1, x2, . . . and integers 1 ≤ u < v, define for t = u, . . . , v − 1 the composite prediction

scheme

C(xt−1) =
∑

F∈F
wt(F ) · F (xt−1),

where wu(F ) = 1/|F|, and for u < t < v,

wt(F ) =
exp{−c

∑t−1
s=u ℓp(F (xs−1), xs) }

∑

F ′∈F exp{−c
∑t−1

s=u ℓP (F ′(xs−1), xs) }

with c a fixed positive constant. Thus C(xt−1) is, for each t = u, . . . , v − 1, a convex com-

bination of the predictions F (xt−1) made by the individual schemes in F , where the weight

assigned to F at time t depends on its success in predicting the values of xu, . . . , x
t−1. The

proof of the following lemma follows closely an argument of Cesa-Bianchi [8] for individual

binary sequences.

27



Lemma 3 Fix p > 1. Over the time interval u ≤ t < v, the cumulative loss of the composite

decision scheme C satisfies the following inequality:

v−1
∑

t=u

ℓp(C(xt−1), xt) ≤ min
F∈F

v−1
∑

t=u

ℓp(F (xt−1), xt) +
1

c
ln |F| +

c

2

v−1
∑

t=u

Λ2(xt),

where Λ(xt) = maxF∈F |F (xt−1) − xt|
p.

Proof: The proof is based on a telescoping argument. To this end, set Wu = |F|, and for

j = u+ 1, . . . , v define

Wj =
∑

F∈F
exp{−c

j−1
∑

s=u

ℓp(F (xs−1), xs) }.

Then it is clear that for t = u, . . . , v − 1,

Wt+1

Wt
=
∑

F∈F
wt(F ) exp{−c ℓp(F (xt−1), xt)) }.

The right hand side of the last equation is the moment generating function of the random

variable Yt = ℓp(F (xt−1), xt)) when F is chosen according to the distribution wt(·). Clearly,

Yt takes values in the interval [0,Λ(xt)]. Thus, centering Yt at its expectation, and apply-

ing Hoeffding’s inequality [26] for the moment generating function of a bounded random

variable, we find that

ln
Wt+1

Wt
≤ −c

∑

F∈F
wt(F ) · ℓp(F (xt−1), xt) +

c2Λ2(xt)

2

≤ −c · ℓp

(

∑

F∈F
wt(F ) · F (xt−1), xt

)

+
c2Λ2(xt)

2

= −c · ℓp(C(xt−1), xt) +
c2Λ2(xt)

2
,

where the second inequality above is a consequence of the convexity of ℓp(·, xt). It follows

by summing over t that

ln
Wv

Wu
≤ −c

v−1
∑

t=u

ℓp(C(xt−1), xt) +
c2

2

v−1
∑

t=u

Λ2(xt). (32)

On the other hand, it is clear that Wv ≥ maxF∈F exp{−c
∑v−1

s=u ℓp(F (xs−1), xs)}, and there-

fore

ln
Wv

Wu
≥ −c min

F∈F

v−1
∑

t=u

ℓp(F (xt−1), xt) − ln |F|. (33)

Combining inequalities (32) and (33) completes the proof of the lemma.
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Proof of Proposition 6: To simplify notation, define bj = 2j for j ≥ 0. Let Ft = F (Xt−1)

for F ∈ F , and let F̃t = F̃ (Xt−1). Fix δ > 0 such that |F (r)| = O(r(1−δ)/2p) and let

M(1) ≤ M(2) ≤ · · · be increasing constants such that |F (r)| ≤ M(r) for each r and

M(r) = O(r(1−δ)/2p). The definition of F̃ ensures that |F̃ (Xt−1)| ≤M(bj) for 1 ≤ t < bj+1.

Fix j0 ≥ 1, let n ≥ bj0+1 and define k = kn = ⌊log2 n⌋. The cumulative loss of F̃ on

X1, . . . ,Xn may be written as follows:

n
∑

t=1

ℓp(F̃t,Xt) =
∑

1≤t<bj0

ℓp(F̃t,Xt) +

k−1
∑

j=j0

∑

bj≤t<bj+1

ℓp(F̃t,Xt) +

n
∑

t=bk

ℓp(F̃t,Xt).

Define Λj(x
t) = maxF∈Fj |F (xt−1)−xt|

p. Repeated application of Lemma 3 shows that the

sum of the last two terms above is at most

k−1
∑

j=j0

min
F∈Fj

∑

bj≤t<bj+1

ℓp(Ft,Xt) + min
F∈Fk

n
∑

t=bk

ℓp(Ft,Xt) +

k
∑

j=j0

log |Fj |

cj

+

k
∑

j=j0

∑

bj≤t<bj+1

cj Λ2
j(X

t)

2

≤ min
F∈Fj0

n
∑

t=1

ℓp(Ft,Xt) +
k
∑

j=0

log |Fj |

cj
+

k
∑

j=0

∑

bj≤t<bj+1

cj Λ2
j (X

t)

2

The two previous displays show that for n ≥ bj0+1,

Ln(F̃ ,X) ≤ min
F∈Fj0

Ln(F,X) +
1

n

∑

1≤t<bj0

ℓp(F̃t,Xt) +
k
∑

j=0

log |Fj |

ncj

+

k
∑

j=0

∑

bj≤t<bj+1

cj Λ2
j (X

t)

2n
(34)

We wish to show that the last three terms in (34) tend to zero as n tends to infinity. As

F̃t and Xt are finite with probability one, it is clear that

1

n

∑

1≤t<bj0

ℓp(F̃t,Xt) → 0 wp1. (35)

Moreover, as log |Fj | = j and n ≥ bk,

k
∑

j=0

log |Fj |

ncj
≤

k
∑

j=0

j

bk cj
≤

k(k + 1)

bk ck
=

k(k + 1)

2
√

k
(36)

which tends to zero, since k = kn tends to infinity with n. Now note that for bj ≤ t < bj+1,

Λ2
j(X

t) ≤ 2p max
1≤r≤bj

|F (r)|2p + 2p |Xt|
2p ≤ 2pM(t)2p + 2p |Xt|

2p.
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By assumption, there is some γ > 0 such that supt≥1E|Xt|
p(1+γ) is finite. Fix 0 < η < δ

such that (1+γ)(1−η) > 1. Then for j ≥ j1 := ⌈η−2⌉ the constants cj satisfy cj ≤ 2−j(1−η).

In particular, cj ≤ 2t−(1−η) for j ≥ j1 and bj ≤ t < bj+1. Therefore

k
∑

j=0

∑

bj≤t<bj+1

cj Λ2
j (X

t)

2n
≤

2(2p+j1)

n

2n
∑

t=1

M(t)2p

t1−η
+

2(2p+j1)

n

2n
∑

t=1

|Xt|
2p

t1−η
. (37)

Since M(t)2p = O(t(1−δ)) and η < δ, the first term on the right side of (37) converges to

zero as n→ ∞. As for the second term, fix α > 0 and note by Markov’s inequality,

P

{

|Xt|
p

t1−η
≥ α

}

= P{|Xt|
p (1+γ) ≥ (α t1−η)1+γ} ≤

sups≥1E|Xs|
p (1+γ)

α1+γ t(1−η)(1+γ)
.

By assumption, the supremum above is finite, and since (1 − δ)(1 + γ) > 1, the sum over t

of the rightmost probabilities is finite. It follows from the Borel Cantelli lemma that, with

probability one, |Xt|
p/t1−η ≥ α for only finitely many value of t. Therefore

lim sup
n→∞

1

n

2n
∑

t=1

|Xt|
2p

t1−η
≤ 2α · lim sup

m→∞

1

m

m
∑

t=1

|Xt|
p wp1

As α > 0 was arbitrary and the limit supremum is finite by assumption (ii), we conclude

that
2(2p+j1)

n

2n
∑

t=1

|Xt|
2p

t1−η
→ 0 wp1.

Combining these relations with inequality (34), it follows that

lim sup
n→∞

Ln(F̃ ,X) ≤ min
F∈Fj0

lim sup
n→∞

Ln(F,X) wp1

and

lim sup
n→∞

[

Ln(F̃ ,X) − min
F∈Fj0

Ln(F,X)

]

≤ 0 wp1.

As j0 ≥ 1 was arbitrary, inequalities (19) and (20) are immediate.

10.4 Proof of Theorem 6

Definition: Let C(k) be the family of functions g : R
k → [−ak, ak] that are measurable

with respect to the sigma field generated by sets of the form C1 × · · · × Ck with Ci ∈ πk.

Thus each g ∈ C(k) is of the form

g(x1, . . . , xk) =
∑

C1,...,Ck∈πk

u(C1, . . . , Ck) I{x1 ∈ C1, . . . , xk ∈ Ck},

where, for every choice of C1, . . . , Ck ∈ πk, u(C1, . . . , Ck) is a fixed number in [−ak, ak].
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Proof of Theorem 6: Let X be a stationary ergodic process such that E|X1|
q < ∞ for

some q > p. Let k ≥ 1 and consider for the moment a sequence of cells Ck
1 = C1, . . . , Ck ∈ πk

such that P{Xk ∈ C1, . . . ,X1 ∈ Ck} > 0. For u ∈ [−ak, ak] define

φ(u,Ck
1 ) := E[ ℓp(u,Xk+1)I{Xk ∈ C1, . . . ,X1 ∈ Ck} ],

and for each t ≥ k + 1 define

φ̂t(u,C
k
1 ) :=

1

t− k − 1

t−1
∑

s=k+1

ℓp(u,Xs)I{Xs−1 ∈ C1, . . . ,Xs−k ∈ Ck}.

Note that φ(u,Ck
1 ) is a bounded, strictly convex function of u ∈ [−ak, ak], and that the

same is true, with probability one, of the functions φ̂t(u,C
k
1 ) for each t so large that

∑t
s=k+1 I{Xs−1 ∈ C1, . . . ,Xs−k ∈ Ck} ≥ 1. The ergodic theorem implies that, with prob-

ability one, φ̂t(u,C
k
1 ) → φ(u,Ck

1 ) for each u ∈ [−ak, ak]. It then follows from standard

results in convex analysis (see [35]) that this convergence is uniform, in the sense that

sup
u∈[−ak,ak]

|φ̂t(u,C
k
1 ) − φ(u,Ck

1 )| → 0 wp1 as t→ ∞. (38)

Define minima

ût(C
k
1 ) := arg min

u∈[−ak,ak]
φ̂t(u,C

k
1 ) and u∗(Ck

1 ) := arg min
u∈[−ak,ak ]

φ(u,Ck
1 ).

For t sufficiently large, the strict convexity of φ̂t and φ imply that both minima are achieved,

and are unique. Moreover, (38) guarantees that ût(C
k
1 ) → u∗(Ck

1 ) with probability one as

t→ ∞.

By definition, the prediction Hk(Xt−1) is equal to ût(πk(Xt−1), . . . , πk(Xt−k)). Define

a new prediction scheme Gk(Xt−1) = u∗(πk(Xt−1), . . . , πk(Xt−k)). Then the difference

|Ln(Hk) − Ln(Gk)| is at most

∑

Ck
1

[

1

n

n
∑

t=1

| ℓp(ût(C
k
1 ),Xt) − ℓp(u

∗(Ck
1 ),Xt) | I{Xt−1 ∈ C1, . . . ,Xt−k ∈ Ck}

]

.

We claim that each term in the sum over Ck
1 tends to zero as n tends to infinity. If

P{Xk ∈ C1, . . . ,X1 ∈ Ck} = 0, then the corresponding average is zero for each n with

probability one. Suppose then that P{Xk ∈ C1, . . . ,X1 ∈ Ck} > 0. By an application of

Lemma 1, it suffices to include in the second sum only those t for which Xt ≤ K, where

K < ∞ is fixed, but arbitrary. Under this restriction, the average tends to zero with
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increasing n as ût(C
k
1 ) → u∗(Ck

1 ). Therefore

lim sup
n→∞

Ln(Hk) = lim sup
n→∞

Ln(Gk)

= lim
n→∞

∑

Ck
1

[

1

n

n
∑

t=k+1

ℓp(u
∗(Ck

1 ),Xt)I{Xt−1 ∈ C1, . . . ,Xt−k ∈ Ck}

]

=
∑

Ck
1

E[ ℓp(u
∗(Ck

1 ),Xk+1) I{Xk ∈ C1, . . . ,X1 ∈ Ck}]

=
∑

Ck
1

min
u∈[−ak,ak]

E[ ℓp(u,Xk+1) I{Xk ∈ C1, . . . ,X1 ∈ Ck} ]

= min
g∈C(k)

∑

Ck
1

E[ ℓp(g(X
k),Xk+1) I{Xk ∈ C1, . . . ,X1 ∈ Ck}]

= min
g∈C(k)

Eℓp(g(X
k),Xk+1). (39)

Now let f : R
r → R be bounded and uniformly continuous, and fix ǫ > 0. For sufficiently

large k, there exists g ∈ C(k) such that E|Xk+1 − g(Xk
1 )|p ≤ E|Xr+1 − f(Xr

1)|p + ǫ. It

follows from Proposition 6 and the relation (39) that

lim sup
n→∞

Ln(H̃,X) ≤ min
k≥1

lim sup
n→∞

Ln(Hk,X)

≤ min
k≥1

min
g∈C(k)

E[ℓ(g(Xk),Xk+1)]

≤ E|Xr+1 − f(Xr
1)|p + ǫ.

As r, f , and ǫ > 0 were arbitrary, H̃ is Cesaro optimal by Lemma 7.
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