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Abstract

We present general sufficient conditions for the almost sure L1-consistency of histogram

density estimates based on data-dependent partitions. Analogous conditions guarantee the

almost-sure risk consistency of histogram classification schemes based on data-dependent

partitions. Multivariate data is considered throughout.

In each case, the desired consistency requires shrinking cells, subexponential growth of

a combinatorial complexity measure, and sub-linear growth of the number of cells. It is not

required that the cells of every partition be rectangles with sides paralles to the coordinate

axis, or that each cell contain a minimum number of points. No assumptions are made

concerning the common distribution of the training vectors.

We apply the results to establish the consistency of several known partitioning esti-

mates, including the kn-spacing density estimate, classifiers based on statistically equivalent

blocks, and classifiers based on multivariate clustering schemes.
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1 Introduction

A natural method of estimating local properties of data in nonparametric statistics is to par-

tition the space of observations into cells, and then compute statistics locally within each cell.

This leads to histogram estimates of an unknown density, and to partition-based classification

rules. The simplest histogram methods partition the space into congruent intervals or cubes

whose size and position depends on the number of available data points, but not on the data

itself. These methods provide estimates that are consistent, regardless of the underlying dis-

tribution of the data. Abou-Jaoude (1976a), (1976c) gave necessary and sufficient conditions

under which a sequence of regular partitions gives rise to L1-consistent estimates for every

density (see also Devroye and Györfi (1985)). A similar result for classification and regression

estimates based on cubic partitions was obtained by Devroye and Györfi (1983). The weak

(in-probability) consistency of these schemes can also be deduced from the general result of

Stone (1977).

Statistical practice suggests that histogram estimators based on data-dependent partitions

will provide better performance than those based on a fixed sequence of partitions. Theo-

retical evidence for this superiority was given by Stone (1985). The simplest data-dependent

partitioning methods are based on statistically equivalent blocks (Anderson (1966), Patrick and

Fisher (1967)), in which each cell contains the same number of points. In one dimensional

problems statistically equivalent blocks reduce to k-spacing estimates (Mahalanobis (1961),

Parthasarathy and Bhattacharya (1961), Van Ryzin (1973)), where the k-th, 2k-th, ... order

statistics determine the partition of the real line.

Many other data-dependent partitioning schemes have been introduced in the literature

(cf. Devroye (1988)). In many cases the partition is described by a binary tree, each of whose

leaves corresponds to a cell of the partition. The tree structure makes computation of the

corresponding classification rule or density estimate fast, and provides a ready interpretation of

the estimate. The consistency of tree-structured classification and regression was investigated

by Gordon and Olshen (1978), (1980), (1984) in a general framework, and was extended by

Breiman, Friedman, Olshen and Stone (1984).

Existing conditions for the consistency of histogram classification and density estimation

using data-dependent partitions require significant restrictions. The conditions of Breiman et

al. (1984) for consistent classification require that each cell of every partition belongs to a

fixed Vapnik-Chervonenkis class of sets, and that every cell must contain at least kn points,
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where kn/ log n → ∞ as the sample size n tends to infinity. Chen and Zhao (1987), and Zhao,

Krishnaiah, and Chen (1990) restrict their attention to density estimates based rectangular

partitions.

This paper presents general sufficient conditions for the almost-sure L1 consistency of his-

togram classification and density estimates that are based on data-dependent partitions. Anal-

ogous conditions for the consistency of histogram regression estimates are addressed in Nobel

(1994).

In the next section two combinatorial properties of partition families are defined, and a

Vapnik-Chervonenkis type large deviation inequality is established. In Section 3, common

features of the estimates investigated in the paper are defined. Sections 4 and 5 are devoted

to the consistency results for density estimation and classification, respectively.

Our results establish consistency under significantly weaker conditions than those imposed

by Breiman et al. (1984) and Zhao, Krishnaiah, and Chen (1990), and are readily applicable to

a number of existing partitioning schemes. In Section 6 the results are applied to establish the

consistency kn-spacing density estimates, classifiers based on statistically equivalent blocks,

and classifiers based on clustering of the data.

2 A Vapnik-Chervonenkis Inequality for Partitions

Let IRd denote d-dimensional Euclidean space. An ordered sequence (x1, . . . , xn) ∈ IRn·d will

be denoted by xn
1 . By a partition of IRd we mean a finite collection π = {A1, . . . Ar} of Borel-

measurable subsets of IRd, referred to as cells, with the property that (i) ∪r
j=1Aj = IRd and

(ii) Ai ∩ Aj = ∅ if i 6= j. Let |π| denote the number of cells in π.

Let A be a (possibly infinite) family of partitions of IRd. The maximal cell count of A is

given by

m(A) = sup
π∈A

|π| .

The complexity of A will be measured by a combinatorial quantity similar to the growth

function for classes of sets that was proposed by Vapnik and Chervonenkis (1971). Fix n

points x1, . . . , xn ∈ IRd and let B = {x1, . . . , xn}. Let ∆(A, xn
1 ) be the number of distinct

partitions

{A1 ∩ B, . . . , Ar ∩ B} (1)

of the finite set B that are induced by partitions {A1, . . . , Ar} ∈ A. Note that the order of
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appearance of the individual sets in (1) is not important. It is easy to see that ∆(A, xn
1 ) ≤

m(A)n. Define the growth function of A as follows:

∆∗
n(A) = max

xn
1
∈IRn·d

∆(A, xn
1 ) (2)

is the largest number of distinct partitions of any n point subset of IRd that can be induced

by the partitions in A.

Let X1,X2, . . . be i.i.d. random vectors in IRd with Xi ∼ µ and let µn denote the empirical

distribution of X1, . . . ,Xn. We wish to establish a large deviations inequality for random

variables of the form

sup
π∈A

∑

A∈π

|µn(A) − µ(A)|, (3)

where A is an appropriate family of partitions. Our analysis relies on the well-known inequality

of Vapnik and Chervonenkis (1971). Consider a class C of subsets of IRd. The shatter coefficient

Sn(C) is defined to be the maximum cardinality of the collection {B ∩C : C ∈ C}, as B ranges

over subsets of IRd containing n points. Vapnik and Chervonenkis (1971) showed that for each

n ≥ 1 and each ǫ > 0,

IP

{

sup
A∈C

|µn(A) − µ(A)| > ǫ

}

≤ 4S2n(C) e−nǫ2/8. (4)

Remark: In order to insure measurability of the supremum in (3), it is necessary to impose

regularity conditions on uncountable collections of partitions. Suppose that m(A) = r < ∞.

Let Ω consist of all measurable functions f : IRd → {1, . . . , r}. Each function in Ω corresponds

to a measurable partition of IRd having at most r cells, and each partition in A corresponds to

a finite collection of functions in Ω. Let Ω′ ⊆ Ω be the collection of all such functions associated

with partitions in A. It is assumed that each family A considered here gives rise to a collection

Ω′ that contains a countable sub-collection Ω0 with the property that every function in Ω′ is

the pointwise limit of a sequence of functions in Ω0. It is easy to show (c.f. Pollard (1984),

pp.38-39) that the supremum in (3) is measurable when A has this property.

The following lemma presents a Vapnik-Chervonenkis inequality for partition families. A

similar inequality, for families of rectangular partitions, was established by Zhao, Krishnaiah,

and Chen (1990).
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Lemma 1 Let A be any collection of partitions of IRd. For each n ≥ 1 and every ǫ > 0,

IP

{

sup
π∈A

∑

A∈π

|µn(A) − µ(A)| > ǫ

}

≤ 4∆∗
2n(A) 2m(A) e−nǫ2/32. (5)

Remark: A longer, but more general, proof can be found in Lugosi and Nobel (1993). The

argument below was suggested by Andrew Barron.

Proof of Lemma 1: For each partition π = {A1, . . . , Ar} ∈ A let B(π) be the collection of

all 2r sets that can be expressed as the union of cells of π. Let

B(A) = {A ∈ B(π) : π ∈ A}

be the collection of all such unions, as π ranges through A. Fix π for the moment and define

Ã =
⋃

A∈π:µn(A)≥µ(A)

A .

Then clearly

∑

A∈π

|µn(A) − µ(A)| = 2
(

µn(Ã) − µ(Ã)
)

≤ 2 sup
A∈B(π)

|µn(A) − µ(A)| .

Consequently,

sup
π∈A

∑

A∈π

|µn(A) − µ(A)| ≤ 2 sup
π∈A

sup
A∈B(π)

|µn(A) − µ(A)|

= 2 sup
A∈B(A)

|µn(A) − µ(A)|. (6)

A straightforward argument shows that S2n(B(A)) ≤ 2m(A)∆∗
2n(A). In conjunction with (4)

and (6) it then follows that

IP

{

sup
π∈A

∑

A∈π

|µn(A) − µ(A)| > ǫ

}

≤ IP

{

sup
A∈B(A)

|µn(A) − µ(A)| >
ǫ

2

}

≤ 4∆∗
2n(A) 2m(A) e−nǫ2/32,

as desired. 2

The results of Sections 4 and 5 rely on the following corollary of Lemma 1, whose proof is

an easy application of the Borel-Cantelli Lemma.

Corollary 1 Let X1,X2, . . . be i.i.d. random vectors in IRd with Xi ∼ µ, and let A1,A2, . . .

be a sequence of partition families. If as n tends to infinity
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(a) n−1m(An) → 0 and

(b) n−1 log ∆∗
n(An) → 0,

then

sup
π∈An

∑

A∈π

|µn(A) − µ(A)| → 0 (7)

with probability one.

3 Data-driven Partitioning Schemes

The density and classification estimates studied below have several common features. In each

case an estimate is produced in two stages from a training set Tn that consists of n i.i.d.

random variables Z1, . . . , Zn taking values in a set X . For density estimation X = IRd, while

for classification X = IRd ×{1, . . . ,M}. Using Tn a partition πn = πn(Z1, . . . , Zn) is produced

according to a prescribed rule. The partition πn is then used in conjunction with Tn to produce

a density estimate as in Section 4, or a classification rule as in Section 5. In either case, the

training set is “used twice” and it is this feature of data-dependent histogram methods that

distinguish them from fixed histogram methods.

An n-sample partitioning rule for IRd is a function πn that associates every n-tuple (z1, . . . zn) ∈
X n with a measurable partition of IRd. Applying the rule πn to Z1, . . . , Zn produces a random

partition πn(Z1, . . . , Zn). A partitioning scheme for IRd is a sequence of partitioning rules

Π = {π1, π2, . . .}

Associated with every rule πn there is a fixed, non-random family of partitions

An = {πn(z1, . . . , zn) : z1, . . . , zn ∈ X}.

Thus every partitioning scheme Π is associated with a sequence {A1,A2, . . .} of partition

families. In what follows the random partitions πn(Z1, . . . , Zn) will be denoted simply by πn.

With this convention in mind, for every x ∈ IRd let πn[x] be the unique cell of πn that contains

the point x.

Let A be any subset of IRd. The diameter of A is the maximum Euclidean distance between

any two points of A:

diam(A) = sup
x,y∈A

‖x − y‖.
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For each γ > 0 let Aγ be the set of points in IRd that are within distance γ of some point in A,

Aγ =

{

x : inf
y∈A

‖x − y‖ < γ

}

.

4 Histogram Density Estimation

In this section we investigate the consistency of histogram density estimates based on data-

dependent partitions. Let µ be a probability distribution on IRd having density f , so that

µ(A) =

∫

A
f(x)dx.

for every Borel subset A of IRd. Let X1,X2, . . . be i.i.d. random vectors in IRd, each distributed

according to µ, and let µn be the empirical distribution of X1, . . . ,Xn. Fix a partitioning

scheme Π = {π1, π2, . . .} for IRd. Applying the n’th rule in Π to X1, . . . ,Xn produces a

partition πn = πn(Xn
1 ) of IRd. The partition πn, in turn, gives rise to a natural histogram

estimate of f as follows. For each vector x ∈ IRd let

fn(x) =







µn(πn[x])/λ(πn[x]) if λ(πn[x]) < ∞
0 otherwise .

(8)

Here λ denotes the Lebesgue measure on IRd. Note that fn is itself a function of the training

set X1, . . . ,Xn, and that fn is piecewise constant on the cells of πn. The sequence of estimates

{fn} is said to be strongly L1-consistent if
∫

|f(x) − fn(x)|dx → 0. (9)

with probability one as n → ∞. The strong distribution-free consistency of kernel and non-data

dependent histogram estimates has been thoroughly studied by Devroye and Györfi (1985).

Remark: While the estimates fn are always non-negative, they need not integrate to one,

indeed
∫

fn(x)dx(x) is just the fraction of those points X1, . . . ,Xn lying in cells A ∈ πn for

which λ(A) is finite. The consistency of the normalized estimates is addressed in Corollary 2

below.

Proposition 1 Let f be a density function on IRd, and for some ǫ < 1/2 let g ≥ 0 satisfy
∫

|f − g|dx < ǫ .

If ĝ(x) = g(x)/
∫

g(y)dy is the normalized density corresponding to g, then
∫

|f − ĝ|dx <
8ǫ

3
.
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Proof: In this proof all integrals are understood with respect to Lebesgue measure. Since

| ∫ g − ∫ f | ≤ ∫ |g − f | < ǫ, it follows that 1 − ǫ ≤ ∫

g ≤ 1 + ǫ. Therefore,
∫
∣

∣

∣

∣

f − g
∫

g

∣

∣

∣

∣

≤
∫
∣

∣

∣

∣

f − f
∫

g

∣

∣

∣

∣

+

∫
∣

∣

∣

∣

f
∫

g
− g
∫

g

∣

∣

∣

∣

=

∫

f

∣

∣

∣

∣

1 − 1
∫

g

∣

∣

∣

∣

+
1
∫

g

∫

|f − g|

< 1 − 1

1 + ǫ
+

ǫ

1 − ǫ
≤ 8ǫ

3
.

2

The following theorem extends previous work of Zhao, Krishnaiah, and Chen (1990) who

found sufficient conditions for the strong L1 consistency of histogram density estimates based on

infinite, data-dependent rectangular partitions. Our result differs from theirs in two respects.

First, we place no restriction on the geometry of the partitions outside of the growth condition

(b) below. Secondly, the condition (c) weakens their requirement that for λ-almost every x the

cells containing x have diameter tending to zero.

Theorem 1 Let X1,X2, . . . be i.i.d. random vectors in IRd whose common distribution µ has

a density f . Let Π = {π1, π2, . . .} be a fixed partitioning scheme for IRd, and let An be the

collection of partitions associated with the rule πn. If as n tends to infinity,

(a) n−1m(An) → 0,

(b) n−1 log ∆∗
n(An) → 0, and

(c) µ{x : diam(πn[x]) > γ} → 0 with probability one for every γ > 0 ,

then the density estimates fn are strongly consistent in L1:
∫

|f(x) − fn(x)|dx → 0

with probability one.

Proof: Fix a number ǫ ∈ (0, 1/2). It follows from Proposition 1 and standard arguments that

there is a continuous density g on IRd such that {x : g(x) > 0} is bounded and
∫ |f − g|dx < ǫ.

Let ν be the measure corresponding to g and set Sν = {x : g(x) > 0}.
Fix n and let πn = πn(Xn

1 ) be the random partition produced from X1, . . . ,Xn. Let fn be

as in (8) above and define the auxiliary functions

f̃n(x) =







µ(πn[x])/λ(πn[x]) if λ(πn[x]) < ∞
0 otherwise
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and

g̃n(x) =







ν(πn[x])/λ(πn[x]) if λ(πn[x]) < ∞
0 otherwise.

It is clear that

|f − fn| ≤ |f − g| + |g̃n − f̃n| + |g − g̃n| + |f̃n − fn|, (10)

so the L1 error of fn is bounded above by the sum of the integrals of each term on the right-hand

side above. By design,
∫ |f − g|dx < ǫ, and it is easy to see that

∫

|g̃n − f̃n|dx ≤
∑

A∈πn

|ν(A) − µ(A)| ≤
∫

|f − g|dx < ǫ

as well.

The last term in (10) involves the difference between µn and µ on cells of the random

partition πn. By considering the worst-case behavior over the range of πn(·), we obtain an

upper bound to which the results of Section 2 apply:

∫

|f̃n − fn|dx ≤
∑

A∈πn

|µn(A) − µ(A)|

≤ sup
π∈An

∑

A∈π

|µn(A) − µ(A)| ,

and it follows from Corollary 1 of Lemma 1 that

lim
n→∞

∫

|f̃n − fn|dx = 0

with probability one.

It remains to consider the third term in (10). Let δ > 0 be so small that δλ(S1
ν) ≤ ǫ,

where S1
ν denotes the 1-blowup of Sν . Let γ ∈ (0, 1) be such that for every set A ⊆ IRd having

diameter less than γ,

sup
x,y∈A

|g(x) − g(y)| < δ.

Let π∗
n be the collection of cells A ∈ πn for which λ(A) is finite. Then

∫

|g(x) − g̃n(x)|dx =
∑

A∈π∗
n

∫

A

∣

∣

∣

∣

g(x) − ν(πn[x])

λ(πn[x])

∣

∣

∣

∣

dx +
∑

A 6∈π∗
n

∫

A
g(x)dx

≤
∑

A∈π∗
n

∫

A

∣

∣

∣

∣

g(x) − ν(πn[x])

λ(πn[x])

∣

∣

∣

∣

dx + ν{x : diam(πn[x]) ≥ γ}. (11)
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An application of Fubini’s Theorem shows that if A ∈ π∗
n, then

∫

A

∣

∣

∣

∣

g(x) − ν(πn[x])

λ(πn[x])

∣

∣

∣

∣

dx = λ(A)−1
∫

A
|g(x)λ(A) − ν(A)| dx

= λ(A)−1
∫

A

∣

∣

∣

∣

g(x)

∫

A
dy −

∫

A
g(y)dy

∣

∣

∣

∣

dx

≤ λ(A)−1
∫

A×A
|g(x) − g(y)|dxdy . (12)

If A ∩ Sν = ∅ then
∫

A×A
|g(x) − g(y)|dxdy = 0. (13)

Suppose that A ∩ Sν 6= ∅. If diam(A) < γ then A ⊆ Sγ
ν and it follows that

∫

A×A
|g(x) − g(y)|dxdy ≤ δλ2(A) = δλ2(A ∩ Sγ

ν ) . (14)

On the other hand, if diam(A) ≥ γ then

∫

A×A
|g(x) − g(y)|dxdy ≤ 2

∫

A×A
g(x)dxdy = 2ν(A)λ(A) . (15)

Combining (11) - (14) shows that

∫

|g(x) − g̃n(x)|dx ≤ 3ν({x : diam(πn[x]) ≥ γ}) + δλ(Sγ
ν )

≤ 3µ({x : diam(πn[x]) ≥ γ}) +
3

2
ǫ + δλ(Sγ

ν ) ,

where the second inequality follows from the fact that for every Borel set A ⊆ IRd,

|ν(A) − µ(A)| ≤ 1

2

∫

|f − g|dx <
1

2
ǫ .

Letting n → ∞ and making use of assumption (c) in the statement of the theorem,

lim sup
n→∞

∫

|g(x) − g̃n(x)|dx ≤ 3

2
ǫ + δλ(Sγ

ν ) ≤ 5

2
ǫ

with probability one. The result may now be established by letting ǫ tend to zero. 2

The consistency of the estimates {fn} extends immediately to their normalized versions

using Proposition 1.

Corollary 2 Under the assumptions of Theorem 1 the L1-error of the normalized partitioning

density estimates converges to zero with probability one. 2
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5 Histogram Classification

In the classification problem, a measurement vector X ∈ IRd is associated in a stochastic

fashion with a class label Y taking on finitely many values. Let (X,Y ), (X1, Y1), (X2, Y2), . . .

be independent and identically distributed with X ∈ IRd and Y ∈ {1, . . . ,M}. Each measurable

decision rule g : IRd → {1, . . . ,M} has an associated error probability, or risk,

L(g) = IP{g(X) 6= Y }.

The decision rule minimizing L(·) is given by

g∗(x) = arg max
k=1,...,M

Pk(x),

where Pk(x) = IP{Y = k|X = x} is the a posteriori probability of the k-th class given that

X = x. Define L∗ = L(g∗).

Let gn be a decision rule that is based on the training set Tn = (X1, Y1), . . . , (Xn, Yn). The

error probability of gn is a random variable given by

L(gn) = IP{gn(X) 6= Y |Tn} .

A sequence {gn} of data-dependent decision rules is said to be strongly risk consistent if

L(gn) → L∗ with probability one as n tends to infinity.

Let Π = {π1, π2, . . .} be a fixed partitioning scheme for IRd. The partitioning rule πn

assigns a measurable partition of IRd to each sequence (x1, y1), . . . , (xn, yn) of labeled vectors.

Of interest here are decision rules that are defined by forming a class-majority votes within

the cells of πn(Tn). Supressing the dependence of πn(Tn) on Tn, define

gn(x) = k if
∑

Xi∈πn[x]

I{Yi = k} ≥
∑

Xi∈πn[x]

I{Yi = l} for l = 1, . . . ,M , (16)

where I{C} denotes the indicator of an event C. Ties are broken in favor of the class having

the smallest index. We emphasize that the partition πn can depend on the vectors Xi, and on

their labels Yi as well.

The weak consistency of histogram classification rules whose partitions depend only on the

vectors Xi may be established using the general result of Stone’s (1977). The strong universal

consistency of histogram classification rules based on data independent cubic partitions was

shown by Devroye and Györfi (1983). Gordon and Olshen (1978), (1980), and (1984) estab-

lished universal consistency for classification and regression schemes based on data-dependent,
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rectangular partitioning of IRd. The most general existing conditions for the risk consistency

of the classification rules studied here can be found in the book of Breiman, Friedman, Olshen

and Stone (1984). These conditions are discussed further in Section 6.

Here we establish the strong risk consistency of the rules {gn} for a wide class of partitioning

schemes Π. The next theorem is analogous to Theorem 1 for density estimation.

Theorem 2 For each n let An be the collection of partitions associated with the n-sample

partitioning rule πn. Let µ be the distribution of X. If as n tends to infinity

(a) n−1m(An) → 0,

(b) n−1 log ∆∗
n(An) → 0, and

(c) for every γ > 0 and δ ∈ (0, 1)

inf
S:µ(S)≥1−δ

µ{x : diam(πn[x] ∩ S) > γ} → 0 with probability one,

then the classification rules {gn} defined in (16) are risk consistent:

L(gn) → L∗

with probability one.

Theorem 2 implies the distribution free consistency of partitioning schemes for which con-

dition (c) is satisfied for every distribution of (X,Y ). An example of such a scheme will be

given in Section 6. The proof of Theorem 2 relies on the following elementary inequality (c.f.

Devroye and Györfi (1985)).

Lemma A Let β1(x), . . . , βM (x) be real-valued functions on IRd, and define the decision rule

h(x) = arg max
1≤k≤M

βk(x).

Then

L(h) − L∗ ≤
M
∑

k=1

∫

|Pk(x) − βk(x)|µ(dx) .

Proof of Theorem 2: Observe that the classification rule gn defined in (16) can be rewritten

in the form:

gn(x) = arg max
1≤k≤M

{

n−1∑n
i=1 I{Xi ∈ πn[x], Y = k}

µ(πn[x])

}

.
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For k = 1, . . . ,M define

Pk,n(x) =
n−1∑n

i=1 I{Xi ∈ πn[x], Y = k}
µ(πn[x])

,

and note that by Lemma A, it is enough to show that

∫

|Pk(x) − Pk,n(x)|µ(dx) → 0 a.s.

for each k. Fix k ∈ {1, . . . ,M} and define

m(x) = Pk(x) and mn(x) = Pk,n(x).

Fix ǫ > 0 and let r : IRd → IR be a continuous function with compact support such that

∫

|m(x) − r(x)|µ(dx) < ǫ.

Define the auxiliary functions

m̃n(x) =
E (I{Y = k}I{X ∈ πn[x]}|Tn)

µ(πn[x])

and

r̃n(x) =
E (r(X)I{X ∈ πn[x]}| Tn)

µ(πn[x])
,

and note that both are piecewise-constant on the cells of the partition πn. We begin with the

following upper bound:

|m(x) − mn(x)|

≤ |m(x) − r(x)| + |r(x) − r̃n(x)| + |r̃n(x) − m̃n(x)| + |m̃n(x) − mn(x)|. (17)

The integral of the first term on the right hand side of (17) is smaller than ǫ by the definition

of r(x). As for the third term,

∫

|r̃n(x) − m̃n(x)|µ(dx) =
∑

A∈πn

∣

∣

∣

∣

∫

A
m(x)µ(dx) −

∫

A
r(x)µ(dx)

∣

∣

∣

∣

≤
∫

|m(x) − r(x)|µ(dx) < ǫ.

Now let η be the distribution of (X, I{Y = k}) on IRd ×{0, 1}, and let ηn be the empirical

measure of (X1, I{Y1 = k}), . . . , (Xn, I{Yn = k}). For each partition π = {A1, . . . , Ar} ∈ An,

define a partition π̃ of IRd × {0, 1} via

π̃ = {A1 × {0}, . . . Ar × {0}} ∪ {A1 × {1}, . . . Ar × {1}} ,
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and let Bn = {π̃ : π ∈ An}. Then

∫

|m̃n(x) − mn(x)|µ(dx) =
∑

A∈πn

∣

∣

∣

∣

∣

1

n

n
∑

i=1

I{Yi = k}I{Xi ∈ A} − E (I{Y = k}I{X ∈ A}|Tn)

∣

∣

∣

∣

∣

=
∑

A∈πn

|ηn(A × {1}) − η(A × {1})|

≤ sup
π∈An

∑

A∈π

|ηn(A × {1}) − η(A × {1})|

= sup
π̃∈Bn

∑

Bj∈π̃

|ηn(Bj) − η(B)| .

It is easy to see that m(Bn) = 2m(An) and ∆∗
n(Bn) = ∆∗

n(An). In conjunction with Corollary

1 of Lemma 1, conditions (a) and (b) above imply that
∫

|m̃n(x) − mn(x)|µ(dx) → 0 a.s.

It remains to consider the second term on the right-hand side of (17). An application of

Fubini’s theorem gives the following bound:
∫

|r(x) − r̃n(x)|µ(dx) =
∑

A:µ(A)6=0

∫

A

∣

∣

∣

∣

r(x) − E (r(X)I{X ∈ A}|Tn)

µ(A)

∣

∣

∣

∣

µ(dx)

=
∑

A:µ(A)6=0

1

µ(A)

∫

A
|r(x)µ(A) − E (r(X)I{X ∈ A}|Tn)|µ(dx)

=
∑

A:µ(A)6=0

1

µ(A)

∫

A

∣

∣

∣

∣

r(x)

∫

A
µ(dy) −

∫

A
r(y)µ(dy)

∣

∣

∣

∣

µ(dx)

≤
∑

A:µ(A)6=0

1

µ(A)

∫

A

∫

A
|r(x) − r(y)|µ(dx)µ(dy) .

Fix δ ∈ (0, 1) and let γ > 0 be chosen so that if A ⊆ IRd satisfies diam(A) < γ then |r(x) −
r(y)| < δ for every x, y ∈ A. Let K < ∞ be a uniform upper bound on |r|. Let S ⊂ IRd be

such that µ(S) ≥ 1 − δ. If diam(A ∩ S) ≥ γ then

1

µ(A)

∫

A

∫

A
|r(x) − r(y)|µ(dx)µ(dy) ≤ 2Kµ(A).

If, on the other hand, diam(A ∩ S) < γ then

1

µ(A)

∫

A

∫

A
|r(x) − r(y)|µ(dx)µ(dy)

≤ 1

µ(A)

(

∫

A∩S

∫

A∩S
|r(x) − r(y)|µ(dx)µ(dy) + 2

∫

A

∫

A\S
|r(x) − r(y)|µ(dx)µ(dy)

)

≤ 1

µ(A)

(

δµ2(A) + 4Kµ(A)µ(A \ S)
)

= δµ(A) + 4Kµ(A \ S).

14



Summing over the cells A ∈ πn, and noting that µ(Sc) < δ, these bounds show that

∫

|r(x) − r̃n(x)|µ(dx) ≤ 2Kµ{x : diam(πn[x] ∩ S) ≥ γ} + (4K + 1)δ .

Take the infimum of both sides above over S ⊂ IRd with µ(S) ≥ 1 − δ and then let n tend to

infinity. By condition (c) of the theorem,

lim sup
n→∞

∫

|r(x) − r̃n(x)|µ(dx) ≤ δ(4K + 1) a.s.

In summary, we have shown that

lim sup
n→∞

∫

|m(x) − mn(x)|µ(dx) ≤ 2ǫ + δ(4K + 1) a.s..

As ǫ and δ were arbitrary, the proof is complete. 2

Remark: The similarity between the conditions of Theorem 1 and Theorem 2 is apparent.

Condition (c) of Theorem 2 is weaker than condition (c) of Theorem 1, however, as one can

see by taking S = IRd in the argument above. Consistent density estimation requires more

stringent conditions on the diameter of the partition-cells than does consistent classification.

6 Applications

6.1 Relation to a previous result

Breiman et al. considered classification rules based on tree-structured partitions. Tree-

structured partitions are produced recursively: beginning with a single cell containing all

of IRd, refinements are made in an iterative fashion by splitting a selected cell of the current

partition with a hyperplane that is based on the data. If the rule πn(·) makes k such splits,

then the resulting partition contains k + 1 cells, each of which is a convex polytope. Breiman

et al. (1984) establish the consistency of classification rules gn defined as in (16) under three

conditions:

a. For every n and every training sequence Tn, each cell of πn(Tn) is a polytope having at

most B faces, where B is fixed.

b. Each cell of πn contains at least kn of the vectors X1, . . . ,Xn, where kn/ log n → ∞.

c. A “shrinking cell” condition that implies condition (c) of Theorem 2.
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Using Theorem 2 it can be shown that conditions (b) and (c) alone suffice to insure the

consistency of classification rules based on tree-structured partitioning schemes.

Theorem 3 Let Π = {π1, π2, . . .} be a sequence of tree-structured partitioning rules for IRd.

Suppose that for every training sequence Tn, each cell of the partition πn(Tn) contains at least

kn of X1, . . . ,Xn, where
kn

log n
→ ∞ . (18)

If the shrinking cell condition (c) of Theorem 2 is satisfied, then the classification rules {gn}
based on Π are risk consistent.

Proof: Let An denote the collection of all possible partitions produced by the rule πn(·). Each

partition πn(Tn) contains at most n/kn cells, so that

m(An)

n
≤ 1

kn
→ 0 .

The recursive nature of the partitioning rule insures that each partition πn(Tn) is based on at

most m(An) = n/kn hyperplane splits. Each such split can dichotomize n ≥ 2 points in IRd in

at most nd different ways (cf. Cover (1965)). It follows that the number of different ways n

vectors can be partitioned by π ∈ An is bounded by

∆∗
n(An) ≤

(

nd
)n/kn

,

and consequently
1

n
log ∆∗

n(An) ≤ d log n

kn
→ 0 .

Thus conditions (a) and (b) of Theorem 2 are satisfied, and the proof is complete. 2

6.2 k-spacing density estimates

Consider the kn-spacing estimate of a univariate density. Let X1, . . . ,Xn be i.i.d. real-valued

random variables whose distribution µ has a density f on IR. Let X(1) < X(2) < . . . < X(n)

be the order statistics obtained by a suitable permutation of X1, . . . ,Xn. (This permutation

exists with probability one as µ has a density.) The rule πn partitions the real line into intervals

such that each interval, with the possible exception of the rightmost, contains kn points. Let

m =
⌈

n
kn

⌉

. Then

πn(Xn
1 ) = {A1, . . . , Am},
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where

X(kn(j−1)+1), . . . ,X(knj) ∈ Aj ,

for each j = 1, . . . ,m − 1, and

X(kn(m−1)+1), . . . ,X(n) ∈ Am .

Theorem 4 applies to any partition having these properties: the endpoints of the individual

cells are not important. The density estimate fn is defined by

fn(x) =



















kn/λ(πn[x]) if x ∈ ∪m−1
j=1 Aj

(n − kn(m − 1))/λ(πn[x]) if x ∈ Am

0 otherwise.

Abou-Jaoude (1976b) established the strong L1-consistency of this estimate when the density

f of µ is Riemann-integrable. An application of Theorem 1 gives the best possible result.

Theorem 4 Let fn be the kn-spacing estimate given above. Then

lim
n→∞

∫

|f(x) − fn(x)|dx = 0 a.s.

if kn → ∞ and kn/n → 0 as n tends to infinity.

Remark: Abou-Jaoude (1976b) showed that the conditions on the block size kn are necessary

for universal consistency, so the conditions above are optimal.

Proof of Theorem 4: Let An contain all the partitions of IR into m =
⌈

n
kn

⌉

intervals. Then

m(An) ≤ n/kn + 1, so that condition (a) of Theorem 1 is satisfied. The partitioning number

∆∗
n(An) is equal to the number of ways n fixed points can be partitioned by m intervals, so

that

∆∗
n(An) =

(

n + m

n

)

.

Let h be the binary entropy function, defined by h(x) = −x log(x) − (1 − x) log(1 − x) for

x ∈ (0, 1). Note that h is increasing on (0, 1/2], h is symmetric about 1/2, and that h(x) → 0

as x → 0. It is well known (c.f. Csiszár and Körner (1981)) that log
(s
t

) ≤ sh(t/s), and

consequently

log ∆∗
n(An) ≤ (n + m)h

(

m

n + m

)

≤ 2nh(1/kn) .
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As kn → ∞, the last inequality implies that

1

n
log ∆∗

n(An) → 0 ,

which establishes condition (b) of Theorem 1.

Now fix γ, ǫ > 0 and let B be so large that µ([−B,B]c) < ǫ. Then

µ{x : diam(πn[x]) > γ} ≤ ǫ + µ( {x : diam(πn[x]) > γ} ∩ [−B,B] ) .

There are at most 2B/γ disjoint intervals of length greater than γ in [−B,B], and consequently

µ( {x : diam(πn[x]) > γ} ∩ [−B,B] ) ≤ 2B

γ
max
A∈πn

µ(A)

≤ 2B

γ

(

max
A∈πn

µn(A) + max
A∈πn

|µ(A) − µn(A)|
)

≤ 2B

γ

(

kn

n
+ sup |µ(A) − µn(A)|

)

,

where in the last inequality the supremum is taken over all intervals in IR. The first term in the

parenthesis tends to zero by assumption, while the second term tends to zero with probability

one by an obvious extension of the classical Glivenko-Cantelli theorem. In summary, for any

γ, ǫ > 0,

lim sup
n→∞

µ{x : diam(πn[x]) > γ} ≤ ǫ a.s.

so that condition (c) of Theorem 1 is satisfied. This completes the proof. 2

6.3 Classification using statistically equivalent blocks

Classification rules based on statistically equivalent blocks are analogous to the k-spacing

density estimate studied above. If the observations Xi are real-valued, then the partition for

the statistically equivalent blocks classification rule agrees with the partition used by the k-

spacing density estimate. Note that partitions of this sort are well-defined only if data points

do not coincide.

For multivariate data the k-spacing partitioning scheme can be generalized in several ways.

Consider a training sequence (X1, Y1), . . . , (Xn, Yn) ∈ IRd × {1, . . . ,M} such that d ≥ 2 and

the distribution of Xi has non-atomic marginals. We consider a partitioning method proposed

by Gessaman (1970). Let mn =

⌈

(

n
kn

)1/d
⌉

. Now project the vectors X1, . . . ,Xn onto the first

coordinate axis. Based on these projections, partition the data into mn sets using hyperplanes

perpendicular to the first coordinate axis, in such a way that each set (with the possible
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exception of the last) contains an equal number of points. This produces mn cylindrical

sets. In the same way, partition each of these cylindrical sets along the second axis into mn

boxes, such that each box contains the same number of data points. Continuing in a similar

fashion along the remaining coordinate axes produces md
n rectangular cells, each of which

(with the possible exception of those on the boundary) contains kn points. The corresponding

classification rule gn is defined as in Section 5, by taking a majority vote among those labels Yi

whose corresponding vectors Xi lies within a given cell. The consistency of this classification

rule can be established by an argument similar to that given for the kn-spacing density estimate

above. It is sufficient to verify that the conditions of Theorem 2 are satisfied. The only minor

difference is in the computation of ∆∗
n, which in this case is upper bounded by

(n+m
n

)d
. The

following theorem summarizes the result.

Theorem 5 Assume that the distribution µ of X has non-atomic marginals. Then the classi-

fication rule based on Gessaman’s partitioning scheme is consistent if kn → ∞ and kn/n → 0

as n tends to infinity. 2

To consider distributions with possibly atomic marginals the partitioning algorithm must

be modified, since for large n every such atom will have more than kn data points with the

same corresponding component. Such a modification is possible, but it is not discussed here.

Remark: Consistency of Gessaman’s classification scheme can also be derived from the results

of Gordon and Olshen (1978) under the additional condition kn/
√

n → ∞. Results in Breiman

et al. (1984) can be used to improve this condition to kn/ log n → ∞. Theorem 5 guarantees

consistency under the optimal condition kn → ∞.

6.4 Clustering-based partitioning schemes

Clustering is a widely used methods of statistical data analysis. Clustering schemes divide the

data into a finitely many disjoint groups by minimizing an empirical error measure, such as the

average squared distance from the cluster centers. In this section we outline the application of

our results to classification rules and density estimates based on nearest-neighbor clustering of

the (unlabeled) measurement vectors Xi.

A clustering scheme is a function C : IRd → C, where C = {c1, . . . cm} ⊆ IRd is a finite set

of vectors known as cluster centers. Every clustering scheme C is associated with a partition

π = {A1, . . . , Am} of IRd having cells Aj = {x : Q(x) = cj}. A clustering scheme C(·) is said
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to be nearest neighbor if for each x ∈ IRd,

C(x) = arg min
cj∈C

‖x − cj‖ ,

with ties broken in favor of the center cj having the least index. In this case the partition π of C

is just the nearest-neighbor partition of the vectors {c1, . . . , cm}. See Hartigan (1975) or Gersho

and Gray (1992) for more details concerning multivariate clustering and its applications.

Let (X1, Y1), (X2, Y2), . . . ∈ IRd × {1, . . . ,M} be i.i.d. and suppose that the distribution

µ of X1 has bounded support. The risk of a clustering scheme C is defined to be R(C) =
∫ ‖x − C(x)‖2dµ(x), and the empirical risk of C with respect to X1, . . . ,Xn is given by

R̂n(C) =
1

n

n
∑

i=1

‖Xi − C(Xi)‖2 . (19)

(Here ‖ · ‖ denotes the usual Euclidean norm.) From a training set Tn = (X1, Y1), . . . , (Xn, Yn)

and a clustering scheme Cn one may produce a classification rule gn be taking class-majority

votes within the cells of Cn. Suitable choice of Cn insures that gn is risk consistent.

Theorem 6 Assume that the distribution µ of Xi has bounded support. Let Cn minimize the

empirical risk Rn(C) over all nearest neighbor clustering schemes C with kn cluster centers.

Let the classification rule gn be defined within the cells of Cn by a majority vote as in (16). If

kn → ∞ and n−1k2
n log n/n → 0, then L(gn) → L∗ with probability one.

Proof: Let Vk be the family of all nearest-neighbor partitions of k vectors in IRd. Then

m(Vk) = k, and every cell of a partition π ∈ Vk is bounded by (k−1) hyperplanes representing

points that are equidistant from two vectors. It is well-known (c.f. Cover (1965)) that n vectors

x1, . . . , xn in IRd can be split by hyperplanes in at most nd different ways. Therefore the cells

of partitions in Vk can intersect x1, . . . , xn in at most n(k−1)d different ways. Each partition

contains at most k cells, so that ∆∗
n(Vk) ≤ nk2d, and consequently

1

n
log ∆∗

n(Vkn
) ≤ dk2

n log n

n
→ 0

by assumption. Thus condition (b) of Theorem 2 is satisfied.

It remains to establish the shrinking cell condition of Theorem 2. Fix γ, δ > 0 and let

c1, . . . , ckn
be the cluster centers of the scheme Cn that minimizes (19). Define

Sn =
kn
⋃

j=1

B(cj , γ/2) ∩ Aj ,
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where Aj is the cell of cj and B(x, α) denotes the open ball of radius α around the vector x.

It is evident that

µ{x : diam(πn[x] ∩ Sn) > γ} = 0,

so it suffices to show that µ(Sn) → 1 with probability one. Using a large-deviation inequality of

Linder, Lugosi, and Zeger (1993) for the empirical squared error of nearest-neighbor clustering

schemes, it can be shown that

R(Cn) → 0 (20)

with probability one. (Here we have made use of the fact that the Xi are bounded.) By the

Markov inequality,

1 − µ(Sn) ≤
(

2

γ

)2

R(Cn)

for each n, and it follows that µ(Sn) → 1 as desired. 2

Suppose now that X1,X2, . . . ∈ IRd are i.i.d. and that the distribution µ of X1 has a density

with bounded support. Let πn be the partition associated with the nearest-neighbor clustering

scheme Cn minimizing (19). It follows from a general result of Nobel (1995) that if R(Cn) → 0

then diam(πn[X]) → 0 in probability. Thus (20) insures that the shrinking cell condition of

Theorem 1 is satisfied, and we obtain the following analogue of Theorem 6 above.

Theorem 7 Let Cn minimize the empirical risk Rn(C) over all nearest neighbor clustering

schemes C with kn cluster centers. Let the density estimate fn be defined within the cells of

Cn as in (8). If kn → ∞ and n−1k2
n log n/n → 0, then

∫ |fn − f |dx → 0 with probability one.
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[1] S. Abou-Jaoude. Conditions nécessaires et suffisantes de convergence L1 en probabilité de
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