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Abstract

Vapnik and Cervonenkis, and Talagrand, have characterized the Glivenko-Cantelli prop-

erty for independent random variables. We show that these characterizations fail to hold

for general stationary ergodic processes.
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1 Introduction

Uniform strong laws extend the classical strong law of large numbers from a single real-

valued function to a collection of such functions. They provide a useful methodology with

which one can establish the consistency of simple inductive procedures for a variety of

statistical problems, including pattern recognition (Vapnik (1982), Devroye (1988)), the

training of neural networks (Baum and Haussler (1989), Hausser (1992), Faragó and Lugosi

(1992)), and machine learning (Blumer et al. (1989)).

Consider a sequence X0,X1,X2, . . . of independent, identically distributed (i.i.d.) ran-

dom variables taking values in a measurable space (X ,S), and having distribution P . If C

is a measurable subset of X , the strong law of large numbers guarantees that the relative

frequency 1

n

∑n−1

i=0
IC(Xi) → P (C) with probability one as n → ∞.

Let C ⊆ S be a countable class of sets. A uniform strong law establishes the simultaneous

convergence of relative frequencies for every set C ∈ C. Specifically, C satisfies a uniform

strong law with respect to {Xi} if

sup
C

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

IC(Xi) − P (C)

∣

∣

∣

∣

∣

→ 0 w.p.1. (1)

In this case C is said to be a Glivenko-Cantelli class. Consideration of uncountable classes

is straightforward when measurability issues are taken into account. Here we will consider

only countable classes of sets.

Vapnik and Cervonenkis (1971) and later Talagrand (1987) found necessary and suffi-

cient conditions under which (1) holds when {Xi} is i.i.d.. Their results are presented in

Theorems A and B of the next section. However, many applications of uniform strong laws

occur in statistical problems where the sequence {Xi} may exhibit short-term or long-term

dependencies, e.g. samples of a speech waveform or contiguous blocks of pixels from a med-

ical image. The application of Theorems A and B (or suitable variations) to such situations

is clearly of interest. Nobel and Dembo (1993) showed that if the convergence in (1) holds

for an i.i.d. sequence {Xi}, then it also holds for every stationary, absolutely regular pro-

cess having the same one-dimensional marginal distribution as {Xi}. Peškir and Weber

(1992) investigated necessary and sufficient conditions for uniform ergodic theorems. Yu

(1993) showed that random entropy conditions are sufficient to guarantee a uniform ergodic

theorem for suitable weakly Bernoulli processes. Peškir and Yukich (1994) extended these

results and considered the more general case of absolutely regular dynamical systems. It

is shown below that the combinatorial conditions of Vapnik, Cervonenkis, and Talagrand

do not apply to stationary ergodic proceses. Standard random entropy conditions are not
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sufficient to insure uniform ergodic theorems in the case of strongly dependent random

variables.

2 Preliminaries

The necessary and sufficient conditions of Vapnik and Cervonenkis and Talagrand can be

expressed in terms of a simple combinatorial quantity that relates the class C and sample

sequences of the process {Xi}. Let S be a finite subset of the set X , and let C be any

collection of subsets of X . Define the index of C with respect to S

∆C(S) = |{C ∩ S : C ∈ C}|

to be the number of distinct subsets of S induced by sets C ∈ C. Clearly, ∆C(S) ≤ 2|S|. If

∆C(S) = 2|S|, then C is said to shatter the set S: the class C shatters S precisely when C

induces every subset of S. We say that C shatters an infinite set S ⊆ X if C shatters every

finite subset of S.

Let C ⊂ S be a countable class of measurable subsets of X , and let the i.i.d. sequence

{Xi} be defined as above. In what follows ∆C(X0, . . . ,Xn−1) will denote the quantity

∆C({X0, . . . ,Xn−1}). The theorem of Vapnik and Cervonenkis (1971) relates uniform strong

laws and the asymptotic growth rate of the index ∆C(X0, . . . ,Xn−1).

Theorem A (Vapnik and Cervonenkis) The uniform strong law (1) holds if and only

if
1

n
log ∆C(X0, . . . ,Xn−1) → 0

in probability. 2

A VC class C is one for which there exists an integer k such that ∆C(x1, . . . , xk) < 2k

for every sequence x1, . . . xk in X . In this case, it can be shown (cf. Sauer (1972)) that

∆C(x1, . . . , xn) ≤ nk for every n ≥ k, so the conditions of Theorem A are satisfied.

Assume now that the probability space (X ,S, P ) is non-atomic. The theorem of Tala-

grand (1987) equates the failure of uniform strong laws with local instability of the class

C.

Theorem B (Talagrand) The uniform strong law (1) fails to hold if and only if there is

a set A ∈ S with P (A) > 0 having the property that, for almost every realization of the

process {Xi}, C shatters the set {Xn1
,Xn2

, . . . } consisting of those Xi that lie in A.
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3 A Counterexample

Theorem 1 For a suitable measurable space (X ,S) and a suitable distribution P , there

exists a countable collection C ⊆ S, and a stationary ergodic process {Yi} defined on (X ,S)

with marginal distribution P such that

a. sup
C

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

IC(Yi) − P (C)

∣

∣

∣

∣

∣

6→ 0 in probability

b.
1

n
log ∆C(Y0, . . . , Yn−1) → 0 in probability

c. There is no set A ∈ S with P (A) > 0 having the property that, for almost every

realization of the process {Yi}, C shatters the set {Yn1
, Yn2

, . . . } consisting of those Yi

that lie in A.

Parts a and b of the theorem indicate that subexponential growth of the index ∆C along

sample sequences does not guarantee the uniform behavior of sample averages. Parts a and

c indicate that the Glivenko-Cantelli property may fail to hold even when C is “stable”.

The proof of the theorem makes use of the Rohklin-Kakutani Lemma. In Györfi et

al. (1989 p.60), Shields used this lemma to show that density estimation with a general

histogram method is not always consistent for stationary ergodic observations. Let (X ,S, P )

be a non-atomic probability space and let the transformation T : X → X be measure-

preserving, invertible, and ergodic. The following lemma is well known (cf. Petersen (1983)).

Lemma A (Rohklin-Kakutani) For every ǫ > 0 and every positive integer n there exists

a measurable set A ⊆ X such that A,TA, . . . , Tn−1A are pairwise disjoint and satisfy P (X \
⋃n−1

i=0
T iA) < ǫ. 2

The counterexample is based on repeated application application of this lemma. For

r = 2, 3, 4, . . . let Ar ∈ S be such that

a. Ar, TAr, . . . , T
r−1Ar are pairwise disjoint

b. P (X \
⋃r−1

i=0
T iAr) < 1/r.

For each r ≥ 2 define Cr =
⋃⌈r/2⌉−1

i=0
T iAr, and note that P (Cr) ≤ 1/2. Define the collection

C = {Cr : r = 2, 3, 4, . . .}.

The process {Yi} is defined on (X ,S , P ) in terms of the transformation T in the usual

way:

Yi(x) = T ix for i = 0, 1, 2, . . . .
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It follows that {Yi} is stationary and ergodic, and that each random variable Yk is distributed

according to P . By definition, a sample sequence Y0(x), Y1(x), Y2(x), . . . of {Yi} corresponds

to a trajectory x, Tx, T 2x, . . . , obtained by repeatedly applying the transformation T to a

point x ∈ X .

Proposition 1 For each n ≥ 1 and every x ∈ X , ∆C(x, Tx, . . . , Tn−1x) ≤ n2 + 2n.

Proof: Fix n ≥ 1 and a point x ∈ X . Consider the trace of the class C on an orbit of length

n beginning at x:

T n
C (x) = {(IC(x), IC(Tx), . . . , IC(T n−1x)) : C ∈ C}.

Note that T n
C (x) is a subset of {0, 1}n and that ∆C(x, Tx, . . . , Tn−1x) = |T n

C (x)|. Therefore,

it is enough to show that |T n
C (x)| is bounded by a polynomial in n.

Every vector in {0, 1}n consists of alternating blocks of 0’s and 1’s. Consider a vector

br = (ICr
(x), ICr

(Tx), . . . , ICr
(T n−1x)) in T n

C (x). By design, every block of ones in this

vector, with the possible exception of the last, is followed by a block of at least r/2 zeros.

In particular, if r ≥ 2n the vector br can have at most one block of 1’s; there are at most

n2 binary n-vectors of this form. Including those vectors br for r = 2, 3, . . . , 2n− 1, we find

that |T n
C (x)| ≤ n2 + 2n. As this bound is independent of x, the proof is complete. 2

Proposition 2 The sequence of random variables

sup
C

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

IC(T ix) − P (C)

∣

∣

∣

∣

∣

n = 0, 1, 2, . . .

does not converge to zero in probability as n → ∞.

Proof: Fix an integer n and consider the set A4n. If x ∈
⋃n−1

j=0
T jA4n then each of

x, Tx, . . . , Tn−1x ∈ C4n and consequently the average 1

n

∑n−1

i=0
IC4n

(T ix) = 1. As P (C4n) ≤

1/2, it follows that

sup
C

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

IC(T ix) − P (C)

∣

∣

∣

∣

∣

≥ 1/2

for every x ∈
⋃n−1

j=0
T jA4n. By an easy calculation P (A4n) ≥ (4n − 1)/(4n)2, and conse-

quently

P (
n−1
⋃

j=0

T jA4n) =
n−1
∑

j=0

P (T jA4n) ≥
4n − 1

16n
,

which is greater than 1/8. This establishes our claim. 2
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Proof of Theorem 1: Parts a and b of the theorem follow immediately from Propositions

1 and 2. To establish part c, assume to the contrary that there exists a set A ∈ S with

P (A) > 0 such that for almost every x ∈ X the class C shatters those points of the

trajectory x, Tx, T 2x, . . . that lie in A. Let α = P (A)/2 > 0, and for n ≥ 1 define the event

An = {x : 1

n

∑n−1

i=0
IA(T ix) ≥ α}.

The ergodic theorem insures that P (An) → 1 as n → ∞. Moreover, by virtue of our

assumption above,

∆C(x, Tx, . . . , Tn−1x) ≥ exp2

(

n−1
∑

i=0

IA(T ix)

)

≥ exp2(αn)

for almost every x in An (here exp2(a) = 2a). Thus, for n large enough

P{x : ∆C(x, Tx, . . . , Tn−1x) ≥ n2 + 2n} > 0.

This contradicts Proposition 1 and completes the proof. 2
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[4] A. Faragó and G. Lugosi. Strong universal consistency of neural network classifiers.

1992. Preprint.
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