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Abstract

General conditions are given under which an individual sequence x = x1, x2, . . .

taking values in a complete separable metric space X will induce a measure preserving

transformation T : X → X . The results here generalize earlier work on D-sequences,

and are established by different methods, based on some elementary facts concerning

sequences with limiting relative frequencies of finite order.
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1 Introduction

Motivated by recent work on chaos and non linear dynamics, there has been increasing

interest in statistical inference from deterministic systems that exhibit random behavior.

Repeated measurements of a given system made at discrete time instants can be represented

by a sequence

x = x1, x2, . . . xi ∈ X (1)

where xi is the value of the i’th measurement, and X is the state space of the system.

Of interest here is the study of x as an individual sequence, apart from any probabilistic

ensemble from which it may have been generated. The primary goal of the paper is to give

general conditions under which x may be called deterministic.

The discrete time evolution of a deterministic system is typically modeled by a map

T : X → X that acts on the state space of the system, and that preserves a measure µ on

X. The evolution of the system beginning at some initial state x ∈ X is then given by the

forward trajectory

x = x, Tx, T 2x, . . . (2)

of T starting at x. Though it is common in statistical analyses to assume that measurements

of the system are subject to observational or dynamical noise, estimates of T , µ, and other

quantities of interest can be obtained directly from x. Observation noise can, in some

situations, be removed by judicious averaging (see Lalley (1998)).

Suppose that x is a fixed sequence of noisy or noiseless measurements of the form (1),

and assume to avoid trivialities that no two elements of x are the same. In light of (2) one

might define x to be deterministic if it arises as the trajectory of some measure preserving

transformation T : X → X. This is sensible if T is assumed to be continuous, but leaves

open the question of which measure, if any, T should preserve. More problematic is the

fact that any measurable transformation T : X → X can be modified on the countable

set {x1, x2, . . .} in order to ensure that xi+1 = Txi for i ≥ 1. If T preserves a non-atomic

measure µ, then the modification is negligible. Thus if this proposed definition is to be

meaningful, some constraints must be placed on T .

As it happens, it is better to turn the question around: rather than ask if x is determined

by a measure preserving transformation, ask instead whether there is a measure preserving

transformation determined by x. The latter question, which is the principal subject of

the paper, is meaningful in very general settings and leads naturally to joint specification

of the transformation and the measure it preserves. The question was first considered by
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Maharam (1965) who defined and studied determining (D) sequences taking values the unit

interval.

1.1 D-sequences

The study of D-sequences is based on shift extension sets and continuous restrictions of

the next-element function. Recall that the lower density of any set M ⊆ N = {1, 2, . . .} is

defined by

d∗(M) = lim inf
n→∞

1

n

n
∑

i=1

I{i ∈ M}.

Let x = x1, x2, . . . be a sequence of numbers xi ∈ [0, 1], no two of which are the same.

Define x(M) = {xi : i ∈ M}. A subset M ⊆ N is said to be a shift extension set if there

exists a homeomorphism φ from x(M) onto a subset of [0, 1] such that

φ(x) = xn+1 if and only if x = xn .

Let λ denote Lebesgue measure on [0, 1]. Then x is said to be a D-sequence if

(D1) For every ǫ > 0 there is a δ > 0 such that d∗(M) > 1 − δ implies λ(x(M)) > 1 − ǫ.

(D2) There exist shift extension sets M1 ⊆ M2 ⊆ · · · such that d∗(Mr) → 1 as r → ∞.

Maharam (1965, Theorems 1 and 2) established the following result.

Theorem A To every D-sequence x there corresponds an almost everywhere invertible

Borel measurable transformation T : [0, 1] → [0, 1] such that

(a) T (xn) = xn+1

(b) For each ǫ > 0 there exists M ⊆ N with d∗(M) > 1 − ǫ such that if xmk
→ x with

mk ∈ M then xmk+1 → T (x).

If T ′ is any other transformation satisfying (b) then λ{T = T ′} = 1. Moreover, if

1

n

n
∑

i=1

I{xi ∈ [a, b)} → λ([a, b)) (3)

for every [a, b) ⊆ [0, 1) then λ(T−1A) = λ(A) for each Borel set A ⊆ [0, 1].

Maharam also defined the notion of an E-sequence. She showed that every E-sequence

determines an ergodic Lebesgue-measure preserving transformation of [0, 1], and that almost

every sample sequence of such a transformation is an E sequence. Bick (1967) extended
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Maharam’s results to sequences taking values in IR that are relatively uniformly distributed

with respect to Lebesgue measure. His arguments readily generalize to sequences with

values in IRl. Kappos and Papadopoulou (1967) further extended Maharam’s results to

sequences taking values in a locally compact Hausdorff space, of possibly infinite measure,

with a countable base.

Sun (1995) showed that there is an almost everywhere continuous isomorphism between

any complete separable metric space X with a non-atomic measure µ and the unit interval

with Lebesgue measure. He defined D-sequences in X and showed that any such sequence

corresponds, via the isomorphism, to a D-sequence in [0, 1]. In particular if x is a D-sequence

in X such that n−1 ∑n
i=1 g(xi) →

∫

gdµ for every function g : X → IR that is continuous at µ-

almost every x ∈ X, then there is a corresponding µ-preserving transformation T : X → X

satisfying conditions (a) and (b) above.

A sequence x is said to be strongly uniformly distributed (s.u.d.) if for each pair of

closed intervals U, V ⊆ [0, 1] and each k ≥ 1, the limit

Rk(U, V ) = lim
n→∞

1

n

n
∑

i=1

I{xi ∈ U}I{xi+k ∈ V }

exists and is such that limm→∞ m−1 ∑m
k=1 Rk(U, V ) = µ(U)µ(V ). Coffey (1989, Theorem

3.1) showed that if x is a uniformly distributed D-sequence in [0, 1] then its associated

transformation T is ergodic if and only if x is strongly uniformly distributed. Sun (1995)

extends this result to sequences taking values in a complete separable metric space. Bick and

Coffey (1991) give an explicit construction for a class of s.u.d. D-sequences whose associated

transformations have entropy zero and are not weakly mixing.

1.2 Predictive Sequences

The results of this paper generalize those of Maharam and others on D-sequences, and are

established by different methods. They are based on some elementary facts about sequences

with limiting relative frequencies of finite order. One possible definition of a determinis-

tic sequence is in terms of the predictive property described below. Predictive sequences

include D-sequences, the trajectories of ergodic measure preserving transformations, and

more general sequences that cannot be represented in the form (2).

Let (X, d) be a complete, separable metric space with Borel sigma field B. Let Xk

have the metric dk(w,w′) =
∑k

i=1 d(wi, w
′
i) and Borel sigma field Bk. Let Cb(X

k) be the

collection of all bounded, continuous functions g : Xk → IR equipped with the supremum

norm ||g|| = supy∈Xk |g(y)|.
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A Borel measurable transformation T : X → X is said to preserve a measure µ on (X,B)

if µ(T−1A) = µ(A) for each A ∈ B, and in this case T is said to be a measure preserving

transformation of (X,B, µ). Henceforth all transformations are assumed to be Borel mea-

surable, and all measures are assumed to be finite. A measure preserving transformation T

of (X,B, µ) is called ergodic if A = T−1A implies µ(A) = 0 or 1, i.e. any set left fixed by

the action of T has measure zero or one.

To decide whether a given sequence x determines a transformation it is useful to look

for a functional relationship between its successive components. Roughly speaking, a D-

sequence is one for which the next element operation xi → xi+1 is, for arbitrarily large sets

of indices i, compatible with a homeomorphism. For the purposes of establishing that x

determines a transformation the following weaker conditions will suffice.

Definition: A sequence x = x1, x2, . . . with xi ∈ X will be called first order predictive if

Λ(g) = lim
n→∞

1

n

n
∑

i=1

g(xi) (4)

exists for every g ∈ Cb(X), and for every ǫ > 0 there is a compact set K and a continuous

function h : K → X such that

lim sup
n→∞

1

n

n
∑

i=1

I{xi /∈ K} ≤ ǫ. (5)

and

lim sup
n→∞

1

n

n
∑

i=1

I{xi ∈ K and d(h(xi), xi+1) ≥ ǫ} ≤ ǫ. (6)

Condition (4) ensures that x has stable first order relative frequencies. Condition (5)

ensures that the elements of x are concentrated on compact sets, and is a natural assump-

tion in view of the fact that every finite measure µ on (X,B) is necessarily tight (see e.g.

Billingsley (1968)). Condition (6) ensures that, on select compact sets, one can predict xi+1

by a continuous function of xi with small average error. Predictive sequences of order k ≥ 2

can be defined in an analogous fashion by extending (4) to functions g ∈ Cb(X
k), and requir-

ing that xi+k be well approximated on average by a continuous function of xi, . . . , xi+k−1.

Predictive sequences of higher order will be considered elsewhere; in what follows first order

predictive sequences will be referred to simply as predictive.

Every D-sequence satisfying (4) is predictive. Conditions (5) and (6) weaken the defini-

tion of a D-sequence in several respects. For x to be predictive there must be a continuous

function h such that h(xi) is close to xi+1 for many indices i. Unlike a D-sequence, however,
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h(xi) need not equal xi+1, nor need h be invertible, nor need the set of “good” indices be

nested in any way.

To every predictive sequence x there corresponds a sequence of continuous functions

h1, h2, . . ., where hj satisfies (6) with ǫ = 1/j. It is natural to conjecture that these func-

tions form a Cauchy sequence under an appropriate metric, and have a limit which is the

transformation determined by x. This is established in Theorem 2 below, where it is shown,

in particular, that to every predictive sequence x there corresponds a measure µ on (X,B)

and a unique µ-preserving transformation T : X → X such that

lim
n→∞

1

n

n
∑

i=1

g(xi, xi+1) =

∫

g(u, Tu)dµ for every g ∈ Cb(X
2). (7)

Theorem 2 generalizes the results of Maharam (1965) and Sun (1995) on induced transfor-

mations in spaces of finite measure. The proof of Theorem 2 makes use of some elementary

facts about sequences with stable relative frequencies, and is based on the existence of one

and two dimensional stationary distributions for x. The proofs of Theorem A and its ex-

tensions give more direct constructions of the induced transformation, based on conditions

like (D1), (D2), and (3) above, and it should be noted that the connection (7) between a

predictive sequence and its induced transformation T is weaker than that guaranteed in

conclusion (b) of Theorem A and its extensions. However, if a predictive sequence x is

also a D-sequence, the transformations in Theorems A and Theorem 2 preserve the same

measure µ and are equal µ-almost everywhere.

1.3 Overview of Paper

The definition and basic properties of averaging sequences are given in the next section.

Section 3 is devoted to the properties of predictive sequences, and the proof of Theorem

2. Several corollaries and extensions of Theorem 2 are presented in Section 3.2, including

simple conditions for the continuity and invertibility of the induced transformation. Finitary

estimation of the induced transformation is briefly discussed in Section 3.4.

In Section 4 two alternative definitions of a deterministic sequence are given. These

definitions are shown to be equivalent to the predictive property when X is a normed linear

space. As a corollary, a connection between the two dimensional distribution of a sequence

and its averaging properties is obtained.
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2 Basic Properties of Averaging Sequences

Definition: A sequence x = x1, x2, . . . with xi ∈ X is tight if for each ǫ > 0 there exists a

compact set K ⊆ X such that

lim sup
n→∞

1

n

n
∑

i=1

I{xi /∈ K} < ǫ. (8)

A sequence x is k-averaging if it is tight and

Λ(g) = lim
n→∞

1

n

n
∑

i=1

g(xi, . . . , xi+k−1) (9)

exists for every g ∈ Cb(X
k).

Tightness of x is equivalent to the tightness of the measures νn(·) = n−1 ∑n
i=1 I{xi ∈

·}. It may readily be shown that tightness in one dimension implies tightness in higher

dimensions.

The condition (9) is taken from Furstenberg’s (1960) extensive study of prediction from

individual sequences that take values in a compact Hausdorff space. There the sequences

under consideration are assumed to be k-averaging for every k ≥ 1, and to satisfy addi-

tional regularity conditions not required here. Masani (1963) gives an overview of some of

Furstenberg’s work. Note that if x is k-averaging then it is l-averaging for l ≤ k. Beginning

with the work of Weyl (1916), there is a substantial literature on the existence, construc-

tion, and properties of 1-averaging sequences, which are commonly referred to as uniformly

distributed. For an overview, see Kuipers and Niederreiter (1973).

A k-averaging sequence is one that obeys the ergodic theorem for functions in Cb(X
k).

While no reference is made to the value of the limits Λ(g) in (9), their existence is sufficient

to ensure that Λ(g) is the integral of g with respect to a unique k-dimensional probability

measure µk. Furstenberg (1960) noted that, when X is compact and Hausdorff, the existence

of µk follows directly from the Riesz representation theorem. A similar connection can be

established for tight sequences.

Theorem 1 If x is tight and k-averaging then there is a unique Borel probability measure

µk on (Xk,Bk) such that Λ(g) =
∫

gdµk for every g ∈ Cb(X
k).

Proof: Note that Cb(X
k) is closed under scaler multiplication, and the pointwise minimum,

maximum and addition of finitely many functions. Thus Cb(X
k) is a vector lattice of

functions on Xk. Evidently Λ(1) = 1, Λ(ag) = aΛ(g) and Λ(g + g′) = Λ(g) + Λ(g′) for

a ∈ IR and g, g′ ∈ Cb(X
k), so Λ(·) is a normalized linear functional on Cb(X

k).
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Let g1 ≥ g2 ≥ · · · be a decreasing sequence of functions in Cb(X
k) such that limn gn(v) =

0 for every v ∈ Xk. Fix ǫ > 0 and let K̃ ⊆ Xk be a compact set such that

lim sup
n→∞

1

n

n
∑

i=1

I{(xi, . . . , xi+k−1) /∈ K̃} < ǫ.

The functions gr converge uniformly to zero on K̃, and therefore when r is sufficiently large,

Λ(gr) ≤ lim sup
n→∞

1

n

n
∑

i=1

[

sup
v∈K̃

gr(v) + ||g1||I{(xi, . . . , xi+k−1) /∈ K̃}
]

≤ (1 + ||g1||)ǫ.

Therefore Λ(gr) → 0 and thus the functional Λ(·) is a Daniell integral. It then follows from

the Daniell-Stone representation theorem (see Royden (1988, p.432)) that there is unique

measure µk on (Xk,S) such that Λ(g) =
∫

Xk g(v)dµk(v) for every g ∈ Cb(X
k). Here S is

the least σ-algebra with respect to which every function in Cb(X
k) is measurable, so that

S ⊆ Bk. On the other hand, S contains every closed ball in Xk, hence every open ball, and

as Xk is separable, Bk ⊆ S. 2

Definition: The measure µk appearing in Theorem 1 will be called the k-dimensional

distribution of x.

If T : X → X is a measure preserving transformation of (X,B, µ) then µ-almost every

trajectory x = x, Tx, T 2x, . . . is tight and k-averaging for k ≥ 1. More generally, almost

every sample sequence of a stationary stochastic process taking values in X is tight and

k-averaging for k ≥ 1. The asymptotic behavior of an averaging sequence is similar to that

of a sample sequence from a stationary process. In some cases, statistical inference from

individual averaging sequences is possible, without the need for stochastic assumptions.

Prediction from individual sequences was studied by Furstenberg (1960). Estimating the

induced transformation of an individual sequence is discussed in Section 3.4.

The limiting distribution of a k-averaging sequence x is unchanged under suitable per-

turbations, insertions, and deletions.

Proposition 1 Let x be a tight, k-averaging sequence with k-dimensional distribution µk.

(a) Let rn(x,y) be the least number of insertions, deletions, and coordinate-wise changes

needed to transform y into a new sequence y′ such that y′1 = y1, . . . , y′n = xn. If

n−1rn(x,y) → 0 then y is k-averaging and has k-dimensional distribution µk.

(b) If y is tight and such that n−1 ∑n
i=1 I{d(xi, yi) > ǫ} → 0 for every ǫ > 0, then y is

k-averaging and has k-dimensional distribution µk.
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Proof: If n−1rn(x,y) → 0 one may readily show that y is tight. Moreover for every

function g ∈ Cb(X
k),

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(xi, . . . , xi+k−1) − 1

n

n
∑

i=1

g(yi, . . . , yi+k−1)

∣

∣

∣

∣

∣

≤ ||g|| k rn(x,y)

n
.

Thus the limiting averages along x and y agree, and y has k-dimensional distribution µk.

To establish (b), fix g ∈ Cb(X
k) and ǫ > 0. Let K be a compact subset of X such that

lim sup
n→∞

1

n

n
∑

i=1

( I{xi /∈ K} + I{yi /∈ K} ) < ǫ ,

and let δ > 0 be such that dk(v1, v2) < δ implies |g(v1) − g(v2)| < ǫ for every v1, v2 ∈ Kk.

For each i ≥ 1 the difference |g(xi, . . . , xi+k−1) − g(yi, . . . , yi+k−1)| is at most

ǫ + 2 ||g||
i+k−1
∑

j=i

(I{xi /∈ K} + I{yi /∈ K} + I{d(xj , yj) ≥ δ}).

It then follows from the assumptions that

lim sup
n→∞

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(xi, . . . , xi+k−1) − 1

n

n
∑

i=1

g(yi, . . . , yi+k−1)

∣

∣

∣

∣

∣

≤ (2k||g|| + 1)ǫ .

As both ǫ > 0 and g ∈ Cb(Xk) were arbitrary, y is k-averaging with k-dimensional distri-

bution µk. 2

Proposition 2 If x is tight and k-averaging then its k and (k − 1) dimensional stationary

distributions satisfy µk−1(A) = µk(A × X) = µk(X × A) for each A ∈ Bk−1.

Proof: Define the measure ν(A) = µk(A × X) for A ∈ Bk−1. Then
∫

IA(u1, . . . , uk−1)dν =

∫

IA(u1, . . . , uk−1)1(uk) dµk ,

where 1(u) = 1 for each u ∈ X, and it follows by standard arguments that
∫

φdν =
∫

φ × 1 dµk for every bounded measurable function φ : Xk−1 → IR. In particular, for every

g ∈ Cb(X
k−1),

∫

g dν = lim
n→∞

1

n

n
∑

i=1

g(xi, . . . , xi+k−2)1(xi+k−1) =

∫

g dµk−1,

and therefore ν = µ(k−1). The proof of the second equality is similar. 2

For each A ⊆ Xk let A and Ao denote, respectively, the closure and interior of A, and

let ∂A = A \ Ao be the boundary of A. The next lemma follows from Theorem 1 and

the Portmanteau Theorem for weak convergence of probability measures (c.f. Billingsley

(1968)).
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Lemma 1 If x is a tight k-averaging sequence with stationary distribution µk, then the

following hold.

(a) For every set A ∈ Bk such that µk(∂A) = 0,

µk(A) = lim
n→∞

1

n

n
∑

i=1

IA(xi, . . . , xi+k−1)

(b) For every open set G ⊆ Xk,

µk(G) ≤ lim inf
n→∞

1

n

n
∑

i=1

IG(xi, . . . , xi+k−1)

(c) For every closed set F ⊆ Xk,

µk(F ) ≥ lim sup
n→∞

1

n

n
∑

i=1

IF (xi, . . . , xi+k−1).

3 Predictive Sequences

3.1 Averaging Properties and Induced Transformations

By definition every predictive sequence x is 1-averaging. In fact, predictive sequences have

limiting relative frequencies of every finite order.

Proposition 3 If x is predictive then x is k-averaging for each k ≥ 1.

Proof: The argument proceeds by induction on k: suppose that x is (k − 1)-averaging for

some k ≥ 2. Fix a function g ∈ Cb(X
k) and a number ǫ > 0. Select a compact set K ⊆ X

and a continuous function h : K → X such that (5) and (6) hold. Let δ ∈ (0, ǫ) be such

that v1, v2 ∈ Kk and dk(v1, v2) < δ implies |g(v1) − g(v2)| < ǫ. Let g̃ : Xk−1 → IR be

any continuous function extending g(u1, . . . , uk−1, h(uk−1)) on Xk−2 × K, and such that

||g̃|| = ||g||. (The existence of g̃ is a consequence of the Tietze Extension Theorem.) For

each u1, . . . , uk ∈ X,

|g̃(u1, . . . , uk−1) − g(u1, . . . , uk)|

≤ ǫ + 2 ||g||




k
∑

j=1

I{uj /∈ K} + I{uk−1 ∈ K, d(h(uk−1), uk) ≥ ǫ}




It then follows from (5), (6), and the choice of K that

lim sup
n→∞

∣

∣

∣

∣

∣

1

n

n
∑

i=1

g(xi, . . . , xi+k−1) −
1

n

n
∑

i=1

g̃(xi, . . . , xi+k−2)

∣

∣

∣

∣

∣

≤ (2||g||(k + 1) + 1)ǫ.
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The average of g̃ on x is convergent since x was assumed to be (k − 1)-averaging. As ǫ > 0

was arbitrary, the average of g is convergent as well. 2

In what follows it will be convenient to consider the metric d′(u, v) = min{d(u, v), 1},
which is bounded and equivalent to d(·, ·) on X. The next lemma shows that the two-

dimensional distribution of a predictive sequence is concentrated near the graph of a mea-

surable function.

Lemma 2 If x is predictive then for every γ > 0 there exists a function f : X → X such

that
∫

d′(f(u), v) dµ2(u, v) ≤ γ.

Proof: Fix γ > 0 and let ǫ = γ/4. Let K ⊆ X be a compact set and h : K → X a

continuous function such that (5) and (6) hold. Let f : X → X be any function agreeing

with h on the set K. By an application of Proposition 2,

∫

d′(f(u), v) dµ2 ≤
∫

K×X
d′(f(u), v) dµ2 + µ(Kc)

Lemma 1 and inequality (5) together imply that µ(Kc) ≤ ǫ. Let g̃ be any element of Cb(X
2)

that extends d′(h(u), v) on K × X, and is such that ||g̃|| = 1. Then

∫

K×X
d′(f(u), v) dµ2 ≤

∫

g̃(u, v) dµ2

= lim
n→∞

1

n

n
∑

i=1

g̃(xi, xi+1)

≤ lim sup
n→∞

1

n

n
∑

i=1

I{xi ∈ K} d′(h(xi), xi+1) + lim sup
n→∞

1

n

n
∑

i=1

I{xi /∈ K}

≤ lim sup
n→∞

1

n

n
∑

i=1

I{xi ∈ K, d′(h(xi), xi+1) ≥ ǫ} + 2ǫ ≤ 3ǫ

Thus
∫

d′(f(u), v) dµ2(u, v) ≤ 4ǫ = γ and the result follows. 2

The conclusion of Lemma 2 can be strengthened using the completeness of the set of

measurable functions f : X → X under the metric α(f1, f2) =
∫

d′(f1(u), f2(u)) dµ. The

following Lemma may be established by a routine modification of the proof of Theorem 19.1

in Billingsley (1995).

Lemma A Let µ be a probability measure on (X,B) and let f1, f2, . . . : X → X be measur-

able functions. If for every ǫ > 0 there is an integer N = N(ǫ) such that
∫

d′(fn, fm) dµ ≤ ǫ

when n,m ≥ N , then there is a measurable function f : X → X for which
∫

d′(fn, f) dµ → 0.
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Theorem 2 If x is a predictive sequence with distribution µ then there is a corresponding

µ-preserving transformation T : X → X such that

µ2{(u, v) : v = Tu} = 1 (10)

and

lim
n→∞

1

n

n
∑

i=1

g(xi, xi+1) =

∫

g(u, Tu)dµ(u) each g ∈ Cb(X
2). (11)

If S is any other transformation satisfying (11) then µ{S = T} = 1, so T is essentially

unique.

Proof: By Lemma 2 there is, for each n ≥ 1, a function hn : X → X such that
∫

d′(hn(u), v)dµ2 ≤ 1/n. It then follows from Proposition 2 that when n,m ≥ N ,

∫

d′(hn, hm) dµ ≤
∫

d′(hn(u), v) dµ2 +

∫

d′(hn(u), v) dµ2 ≤ 2/N.

By Lemma A there exists a measurable function T : X → X such that
∫

d′(hn, T ) dµ → 0.

For each n ≥ 1,

∫

d′(Tu, v) dµ2 ≤
∫

d′(T, hn) dµ +

∫

d′(hn(u), v) dµ2.

Letting n → ∞ it follows that
∫

d′(Tu, v)dµ2 = 0, which is equivalent to (10). In particular,

if g ∈ Cb(X
2) then

lim
n→∞

1

n

n
∑

i=1

g(xi, xi+1) =

∫

g(u, v) dµ2 =

∫

g(u, Tu) dµ2 =

∫

g(u, Tu) dµ,

which establishes (11). For each U, V ∈ B,

µ2(U × V ) =

∫

I{u ∈ U, v ∈ V } dµ2 =

∫

I{u ∈ U, Tu ∈ V } dµ = µ(U ∩ T−1V ) (12)

so that µ(T−1V ) = µ2(X × V ) = µ(V ) by Proposition 2. Therefore T preserves µ.

Let S : X → X be another measurable transformation, and define functions β1(U, V ) =

µ(U ∩ T−1V ) and β2(U, V ) = µ(U ∩ S−1V ). For each U, V ∈ B and i = 1, 2 the functions

βi(·, V ) and βi(U, ·) are measures on B. If S satisfies (11) then
∫

g(u, Tu)dµ =
∫

g(u, Su)dµ

for every g ∈ Cb(X
2) and it follows that β1(U, V ) = β2(U, V ) for each U, V ∈ {A ∈ B :

µ(∂A) = 0}. As this collection generates B and is closed under intersections, β1(U, V ) =

β2(U, V ) for each U, V . Therefore for each V ∈ B,

µ(S−1V \ T−1V ) = µ(T−1V \ S−1V ) = 0. (13)
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Let u1, u2, . . . is a countable dense subset of X. Then

{T 6= S} =
∞
⋃

i=1

⋃

r>0

[T−1B(ui, r) \ S−1B(ui, r) ] ,

where the second union is restricted to the positive rationals. It follows from (13) that each

term in brackets above has µ-measure zero. 2

It is shown in the proof of Theorem 2 above that if x is 2-averaging then (10) implies

(11). Conversely, if (11) holds, then (12) holds for U, V with µ(∂U) = µ(∂V ) = 0, and

one may then deduce (10) from arguments like those used to establish the uniqueness of T

above.

Definition: A 2-averaging sequence x will be said to induce a transformation T : X → X

if either of the equivalent conditions (10) or (11) holds.

Proposition 1 shows that suitable modification of a predictive sequence leaves its asymp-

totic sample averages unchanged, and therefore yields another predictive sequence with the

same induced transformation.

3.2 Corollaries and Extensions

As a corollary of Theorem 2 one may derive a simple necessary and sufficient condition

under which a 1-averaging sequence induces a continuous transformation.

Corollary 1 A 1-averaging sequence x induces a continuous transformation S : X → X if

and only if n−1 ∑n
i=1 d′(Sxi, xi+1) → 0.

Proof: Let x be 1-averaging. If x induces a continuous transformation S then g(u, v) =

d′(Su, v) ∈ Cb(X
2) so that by (11)

lim
n→∞

1

n

n
∑

i=1

d′(Sxi, xi+1) =

∫

d′(Su, Su) = 0.

Conversely, if for some continuous S : X → X the limit of n−1 ∑n
i=1 d′(Sxi, xi+1) is zero,

then x is predictive and Proposition 1 implies that for each g ∈ Cb(X
2),

lim
n→∞

1

n

n
∑

i=1

g(xi, xi+1) = lim
n→∞

1

n

n
∑

i=1

g(xi, Sxi) =

∫

g(u, Su) dµ(u).

It then follows from the uniqueness part of Theorem 2 that S is an induced transformation

of x.
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The cited references on D-sequences consider invertible transformations. The transfor-

mation T induced by a predictive sequence x need not be invertible. However ‘reversing’

the predictive condition gives a simple sufficient condition for the invertibility of T :

A predictive sequence x induces an invertible transformation T : X → X if for

every ǫ > 0 there is a compact set K ⊆ X satisfying (5) and a continuous map

h : K → X such that lim supn n−1 ∑n
i=1 I{d(xi, h(xi+1)) ≥ ǫ, xi+1 ∈ K} ≤ ǫ.

Equation (11) is extended to larger numbers of coordinates below. This generalizes a

similar result for D-sequences established by Coffey (1989, Lemma 4.2).

Proposition 4 Let x be a predictive sequence with induced transformation T and distribu-

tion µ. For every k ≥ 3 and every choice of g ∈ Cb(X
k),

1

n

n
∑

i=1

g(xi, . . . , xi+k−1) →
∫

g(x, Tx, . . . , T k−1x) dµ(x). (14)

Proof: The case k = 2 is a consequence of Theorem 2. Consider the case k = 3; the

argument for larger values of k is similar. Let µ3 be the 3-dimensional distribution of x. Fix

g ∈ Cb(X
3) and define sets A = {(u, v,w) : w = Tv} and B = {(u, v,w) : v = Tu,w = Tv}.

Note that
∫

g(u, v,w) dµ3 =

∫

A
g(u, v,w) dµ3 +

∫

Ac

g(u, v,w) dµ3 =

∫

A
g(u, v,w) dµ3

as the the third term is bounded in absolute value by ||g||µ3(A
c) = ||g||µ2{(v,w) : w 6=

Tv} = 0. Therefore,
∫

g(u, v,w) dµ3 =

∫

B
g(u, v,w) dµ3 +

∫

A\B
g(u, v,w) dµ3 .

Since I{v 6= Tu,w = Tv} ≤ I{v 6= Tu}, the absolute value of the second term is at most

||g||µ3(A \ B) ≤ ||g||µ2{(u, v) : v 6= Tu} = 0. Therefore
∫

g(u, v,w) dµ3 =

∫

B
g(u, v,w) dµ3 =

∫

g(u, Tu, T 2u) dµ3 =

∫

g(u, Tu, T 2u) dµ.

The result follows immediately by identifying
∫

g(u, v,w) dµ3 with limiting sample averages

of x. 2

3.3 Ergodicity of the Induced Transformation

The trajectories of ergodic maps provide a motivating example for the study of deterministic

sequences. As expected, such trajectories are predictive. The following proposition may be

established by combining Proposition 20 of Sun (1995) with Theorem 5 of Maharam (1965).
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Proposition A If S : X → X is an ergodic measure preserving transformation of (X,B, µ)

then for µ-almost every x ∈ X the trajectory x = x, Sx, S2x, . . . is a predictive sequence

with distribution µ and induced transformation T = S.

Some predictive sequences, e.g. those with repeated terms, may not be representable as

the generic trajectory of an ergodic transformation. More importantly, the natural converse

to Proposition A does not hold: the transformation induced by a predictive sequence x need

not be ergodic. Maharam (1965) describes a predictive sequence taking values in [0, 1] that

determines the identity map T (x) = x. To sketch a simpler example of how T may fail to

be ergodic, let x and y be two predictive sequences whose respective distributions ν1 and

ν2 have disjoint supports. Define s1 = 1 and sl = sl−1 + l1/2 for l > 1. Divide x and y

into non-overlapping blocks bl = xsl−1
, . . . , xsl−1 and cl = ysl−1

, . . . , ysl−1, and define a new

sequence z = b1, c1, b2, c2, . . . by interleaving the blocks. It can readily be shown that z is

a predictive sequence with distribution ν = ν1/2 + ν2/2. Moreover, the supports of ν1 and

ν2 will be non-trivial invariant sets for the induced transformation T of z, and therefore

T fails to be ergodic. This construction may be carried with any finite number of initial

sequences.

Let x be a 1-averaging predictive sequence with distribution µ and induced transforma-

tion T . For each pair g1, g2 ∈ Cb(X), define

Rk(g1, g2) = lim
n→∞

1

n

n
∑

i=1

g1(xi)g2(xi+k) .

It follows immediately from standard results (e.g. Petersen (1989, Proposition 5.3)) that

the induced transformation T of x is ergodic if and only if

lim
m→∞

1

m

m
∑

k=1

Rk(g1, g2) =

∫

g1 dµ ·
∫

g2 dµ

for each g1, g2 ∈ Cb(X). Analogous characterizations for D-sequences were given by Coffey

(1989) and Sun (1995). Note that the conditions, involving first a limit with increasing

sample size, and then a limit with increasing separation, do not provide an effective means

for establishing the ergodicity of the induced transformation.

3.4 Estimation of the Induced Transformation

Theorem 2 shows that predictive sequence x induces a unique measure preserving trans-

formation T : X → X. The sense in which x induces T is infinitary: given the entire

sequence x one can, in principle, construct the induced transformation T . However, when
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the one-dimensional distribution µ of x is comparable to a known reference measure, it

is possible estimate T in a finitary fashion from the initial sequences of x. Let µ0 be a

fixed, non-atomic probability measure on (X,B). For each κ > 1 define the set of measures

D(µ0, κ) = {µ : κ−1 ≤ dµ/dµ0 ≤ κ}. The following theorem is given in Adams and Nobel

(1999).

Theorem B Given µ0 and κ there exist measurable maps T̂n : Xn+1 → X, n ≥ 1, such

that for every predictive sequence x with distribution µ ∈ D(µ0, κ),

µ(T̂−1
n A∆ T−1A) → 0 for every A ∈ B .

Here T is the induced transformation of x, and T̂n(x) = T̂n(x : x1, . . . , xn) is an estimate

of T based on the first n elements of x.

4 Strong Predictive and Singular Sequences

Two alternative families of “deterministic” sequences are defined below, one formally smaller

than the family of predictive sequences, and one larger. It is shown that all three families

coincide if X is a normed linear space. The first alternative family is defined by requiring

that the functions h appearing in the definition of a predictive sequence be continuous on

all of X.

Definition: A sequence x = x1, x2, . . . with xi ∈ X will be called strong predictive if it is

1-averaging and for every δ > 0 there is a continuous function h : X → X such that

lim sup
n→∞

1

n

n
∑

i=1

I{d(h(xi), xi+1) ≥ δ} ≤ δ. (15)

The second alternative family is defined solely in terms of the two dimensional distri-

bution of x, without (explicit) reference to its limiting sample averages. Recall that two

measures ν1 and ν2 on (X,B) are mutually singular, written ν1 ⊥ ν2, if they are supported

on disjoint sets, i.e. if there exists a set W ∈ B such that ν1(W
c) = ν2(W ) = 0.

Definition: A 2-averaging sequence x will be called singular if its two dimensional distri-

bution µ2 is such that

µ2(· × V ) ⊥ µ2(· × V c) for each V ∈ B , (16)

in other words, the one-dimensional measures µ2(·×V ) and µ2(·×V c) have disjoint supports.
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Using general results on the connection between set mappings and point mappings (c.f.

Royden (1988)) one may show that every singular sequence induces a measure preserving

transformation (c.f. Rudolph (1990)). A special case of this fact follows from Proposition

5 below, where it is shown that the three types of sequences defined above coincide if X

satisfies the following condition.

Assumption I: For every finite measure µ, every finite-valued Borel measurable function

f : X → X and every ǫ > 0 there exists a continuous function h : X → X such that
∫

d′(f, h) dµ < ǫ.

It follows readily from Lusin’s Theorem that Assumption I holds when X = IRl, l ≥ 1,

and when X = IR∞ with metric d(a,b) =
∑

i≥1 2−i|ai − bi|. A direct argument, using

Urysohn’s Lemma and the regularity of Borel measures, shows that Assumption I holds for

any separable Banach space.

Proposition 5 If x = x1, x2, . . . takes values in a complete separable metric space satisfying

Assumption I, then the following are equivalent:

(a) x is predictive

(b) x is singular

(c) x is strong predictive

Proof: In each case the definitions ensure that x is 1-averaging, and therefore tight. If x

is predictive then it is 2-averaging by Proposition 5, and it follows readily from the relation

(12) established in the proof of Theorem 2 that x is singular.

Suppose then that x is singular, and fix ǫ > 0. Let K ⊆ X be a compact set such that

n−1 ∑n
i=1 I{xi /∈ K} is eventually less than ǫ, and let π = {V1, . . . , Vr} be a finite partition

of X such that diam(Vi) ≤ ǫ if Vi ∩ K 6= ∅. It follows from (16) that to each Vi ∈ π there

corresponds a set Ui ⊆ X such that µ2(Ui × V c
i ) = µ2(U

c
i × Vi) = 0. In particular, one has

µ(Ui) = µ2(Ui × X) = µ2(Ui × Vi) = µ2(X × Vi) = µ(Vi)

so that
∑r

i=1 µ(Ui) = 1. Moreover, if i 6= j then

µ(Ui ∩ Uj) = µ2((Ui ∩ Uj) × Vi) + µ2((Ui ∩ Uj) × V c
i )

≤ µ2(Uj × V c
j ) + µ2(Ui × V c

i ) = 0.

Thus, by removing or adding a µ-nullset from each Ui, we may assume that {U1, . . . , Ur}
are a partition of X.
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Select points vi ∈ Vi and define f : X → X by setting f(u) = vi if u ∈ Ui. By

Assumption I there is a continuous function h : X → X such that
∫

d′(h, f)dµ ≤ ǫ. Then

g(u, v) = d′(h(u), v) is bounded and continuous, and since x is 2-averaging,

lim
n→∞

1

n

n
∑

i=1

d′(h(xi), xi+1) =

∫

d′(h(u), v) dµ2

≤
∫

d′(f(u), v) dµ2 +

∫

d′(h(u), f(u))dµ

≤
r

∑

i=1

∫

X×Vi

d′(f(u), v) dµ2 + ǫ

=
r

∑

i=1

∫

Ui×Vi

d′(f(u), v) dµ2 + ǫ

=
r

∑

i=1

∫

Ui×Vi

d′(vi, v)dµ2 + ǫ

≤
r

∑

i=1

[ǫµ2(Ui × Vi) + µ2(K
c × Vi)] + ǫ ≤ 3ǫ,

where the second equality is a consequence of the fact that µ2(U
c
i × Vi) = 0. This last

inequality and the elementary relation

I{d(h(xi), xi+1) ≥
√

3ǫ} ≤ d′(h(xi), xi+1)/
√

3ǫ

show that (15) holds with δ =
√

3ǫ. As ǫ > 0 was arbitrary, it follows that x is strong

predictive. Finally, it is clear that every strong predictive sequence is predictive. 2

Proposition 5 establishes a connection between the k-averaging properties of a sequence

and general features of its two dimensional distribution.

Corollary 2 Let x be a 2-averaging sequence taking values in a separable Banach space. If

the 2-dimensional distribution of x is singular or, equivalently, is concentrated on the graph

of a measurable function, then x is k-averaging for every k ≥ 1.
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