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Abstract

Let F be a family of Borel measurable functions on a complete separable metric

space. The gap (or fat-shattering) dimension of F is a combinatorial quantity that

measures the extent to which functions f ∈ F can separate finite sets of points at a

predefined resolution γ > 0. We establish a connection between the gap dimension

of F and the uniform convergence of its sample averages under ergodic sampling. In

particular, we show that if the gap dimension of F at resolution γ > 0 is finite, then for

every ergodic process the sample averages of functions in F are eventually within 10γ

of their limiting expectations uniformly over the class F . If the gap dimension of F is

finite for every resolution γ > 0 then the sample averages of functions in F converge

uniformly to their limiting expectations. We assume only that F is uniformly bounded

and countable (or countably approximable). No smoothness conditions are placed on

F , and no assumptions beyond ergodicity are placed on the sampling processes. Our

results extend existing work for i.i.d. processes.
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1 Introduction

Let X be a complete separable metric space, and let F be a countable family of Borel-

measurable functions f : X → R. We assume in what follows that F is uniformly bounded

in the sense that |f(x)| ≤M for every x ∈ X and f ∈ F , where M <∞ is a fixed constant.

Let X = X1, X2, . . . be a stationary ergodic process taking values in X . By the ergodic

theorem, for each f ∈ F , the averages m−1
∑m

i=1 f(Xi) converges with probability one to

Ef(X). Of interest here is the limiting behavior of the discrepancy

Γm(F : X) 4= sup
f∈F

∣∣∣∣∣ 1
m

m∑
i=1

f(Xi) − Ef(X)

∣∣∣∣∣ , (1)

which measures the maximum difference between m-sample averages and their limiting

expectations over the functions in F .

The discrepancy Γm(F : X) and related quantities have been studied in a number of

fields, including empirical process theory, machine learning and non-parametric inference.

The majority of existing work considers the case in which X1, X2, . . . are independent and

identically distributed, but there is also a substantial literature concerned with the behavior

of the discrepancy for mixing processes (see [1] and the discussion below). Our focus here

is on the general dependent case: the process X is not assumed to satisfy any mixing

conditions beyond ergodicity.

When X is ergodic, the limiting behavior of the discrepancy Γm(F : X) can be summa-

rized by a single number. As shown in Steele [15], Kingman’s subadditive ergodic theorem

implies that there is a non-negative constant Γ(F : X) such that

lim
m→∞

Γm(F : X)→ Γ(F : X) wp1. (2)

We will call Γ(F : X) the asymptotic discrepancy of F on X, and will omit mention of X

when no confusion will arise. When Γ(F : X) = 0 the sample averages of function f ∈ F

converge uniformly to their limiting expectations, and F is said to be a Glivenko Cantelli

class for the process X.

In this paper we provide bounds on the asymptotic discrepancy of F in terms of a

combinatorial quantity known as the gap dimension that measures the complexity of F at

different resolutions or scales.

Definition: Let γ > 0. The family F is said to γ-shatter a finite set D ⊆ X if there is an

α ∈ R such that for every D0 ⊆ D there exists a function f ∈ F satisfying

f(x) > α+ γ if x ∈ D0 and f(x) < α− γ if x ∈ D \D0
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The gap dimension of F at resolution γ, written dimγ(F), is the largest k such that F

γ-shatters some set of cardinality k. If F can γ-shatter sets of arbitrarily large finite

cardinality, then dimγ(F) = +∞.

The gap dimension was introduced by Kearns and Schapire [9] in a slightly more general

form. Specifically, they allowed the constant γ to be replaced by a fixed function g : X → R.

We will refer to this notion as the weak gap dimension in what follows. The definition of

gap dimension given here was suggested by Alon, Ben-David, Cesa-Bianchi and Haussler

[2], who also established elementary bounds relating the gap and weak gap dimensions.

Gap dimensions have been referred to by a variety of names in the literature, including

scale-sensitive dimension and fat-shattering dimension. Our principal result is the following

theorem. As above, X is assumed to be a complete separable metric space.

Theorem 1. Let F be a countable, uniformly bounded family of Borel measurable functions

f : X → R, and let X be a stationary ergodic process with values in X . If the asymptotic

discrepancy Γ(F : X) > η for some η > 0, then dimγ(F) =∞ for every γ ≤ η/10.

The constant 10 dividing γ can, with minor modifications of the proof, be improved to

4 + ε, where ε is any fixed positive constant. Theorem 1 has the following, equivalent, form.

Corollary 1. Let F be as in Theorem 1. If dimγ(F) <∞ for some γ > 0 then Γ(F : X) ≤

10γ for every stationary ergodic process. In particular, if dimγ(F) < ∞ for every γ > 0,

then Γ(F : X) = 0 for every stationary ergodic process.

Uncountable Families The countability of F ensures that the discrepancies Γm(F ,X),

m ≥ 1, are measurable. More importantly, countability of F is used in the proof of

Proposition 1 and is a key assumption in Lemma B. Nevertheless, one may readily ex-

tend Theorem 1 to uncountable families under simple approximation conditions. Call a

(possibly uncountable) family F nice for a process X if Γm(F : X) is measurable for each

m ≥ 1, and if for every ε > 0 there exists a countable sub-family F0 ⊆ F such that

lim supm Γm(F : X) ≤ lim supm Γm(F0 : X) + ε with probability one. The conclusion of

Theorem 1 immediately extends to any ergodic processes X for which F is nice.

In spite of such extensions, assumptions regarding the countability or countable approx-

imability of F cannot be dropped altogether, as they exclude extreme examples that can

arise in the context of dependent processes. We illustrate with a simple example from [1].

Let T be an irrational rotation of the unit circle S1 with its uniform measure. Denote by T i

the i-fold composition of T with itself if i ≥ 1, the i-fold composition of T−1 with itself if
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i ≤ −1 and the identity if i = 0. For each x ∈ S1 let Cx = ∪∞i=−∞{T ix} be the (bi-infinite)

trajectory of x under T , and let F be the family of indicator functions of the sets Cx. Note

that F is uncountable, and that every set Cx has Lebesgue measure zero. For distinct

points x1, x2 ∈ S1, either Cx1 = Cx2 , or Cx1 ∩ Cx2 = ∅, and therefore dimγ(F) = 1 for

0 < γ < 1
2 . Now let Xi = T iX0, where X0 is uniformly distributed on S1. Then the process

X = X1, X2, . . . is stationary and ergodic. Moreover, it is easy to see that Ef(X) = 0 for

each f ∈ F , and that supf∈F m−1
∑m

i=1 f(Xi) = 1. Thus Γm(F : X) = 1 with probability

one for each m ≥ 1, and the conclusion of Corollary 1 fails to hold.

1.1 Related Work

Vapnik and Chervonenkis [18] gave necessary and sufficient conditions for uniform con-

vergence of sample means in the i.i.d. case. Specifically, they showed that if X is i.i.d.,

then Γ(F : X) = 0 if and only if n−1 logN(ε,F , Xn
1 ) → 0 in probability for every ε > 0.

Here N(ε,F , Xn
1 ) is the number of ε-balls needed to cover F under the empirical L1 metric

d(f1, f2) = n−1
∑n

i=1 |f1(Xi) − f2(Xi)|. Extensions of these results to empirical processes

can be found, for example, in Giné and Zinn [8] (see also Dudley [7]).

Talagrand [16] gave necessary and sufficient conditions for uniform convergence of sample

means, which are different than those of [18]. He showed that Γ(F : X) > 0 for an i.i.d.

process X with Xi ∼ P if and only if there exists a set A with P (A) > 0 and γ > 0 such

that for every n ≥ 1 the family F γ-shatters Pn-almost every sequence x1, . . . , xn ∈ An.

Alon et al. [2] considered the relationship between the gap dimension and the learnability

of classes of uniformly bounded functions under independent sampling. In particular, they

showed that if F is a family of functions f : X → [0, 1] satisfying suitable measurability

conditions, and such that dimγ(F) is finite for some γ > 0, then

lim
n→∞

[
sup

X∈I(X )
P
(

sup
m≥n

Γm(F : X) > ε

)]
= 0 (3)

when ε = 48γ. Here I(X ) is the family of all i.i.d. processes taking values in X . Conversely,

if dimγ(F) = +∞, they showed that (3) fails to hold for every ε < 2γ. Further connections

between the gap dimension and different notions of learnability (in the i.i.d. case) can be

found in [3] and the references therein. Talagrand [17] and Mendelson and Vershynin [11]

showed that the L2 covering numbers of a uniformly bounded sets of functions can be

bounded in terms of its weak gap dimension.

In addition to the papers cited above, there are a number of results on uniform conver-

gence for dependent processes satisfying a variety of standard mixing conditions; a discussion
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of these results can be found in [1]. In related work, Rao [13] and Billingsley and Topsøe

[6] studied and characterized classes of functions F such that supF |
∫
fdPn −

∫
dP | → 0

whenever Pn converges weakly to P . As noted in [6], the elements of such uniformity classes

are necessarily continuous almost everywhere with respect to P . Bickel and Millar [4] pro-

vided sufficient conditions for a more general notion of uniformity, and revisited several of

the results in earlier papers.

Adams and Nobel [1] established Theorem 1 in the special case where the elements of

F are indicator functions of subsets of X . The problem simplifies in this case, as dimγ(F)

is zero for γ ≥ 1/2, and equal to the VC-dimension of F if 0 ≤ γ < 1/2. If F has finite

VC-dimension, their results imply that Γ(F : X) = 0 for every ergodic process X. For

uniformly bounded families F they show that Γ(F : X) = 0 for every ergodic process X if

dim0(F) <∞, or if F is a VC-graph class (c.f. [12]).

1.2 Overview

The proof of Theorem 1 is based on the direct construction of γ-shattered sets of arbitrarily

large cardinality. In particular, the proof does note make use of results or techniques from

the study of uniform convergence in the i.i.d. case. The core of the construction, which is

contained in Section 5 below, follows the arguments in [1].

In the next section we reduce Theorem 1 to an analogous result with X is equal to the

unit interval. This equivalent result is stated in Theorem 2. Section 3 contains several

preliminary definitions and Lemmas used in the proof of Theorem 2. The proof of Theorem

2 is presented in Sections 4 - 7. Section 4 gives an outline of the proof of the theorem. The

proofs of two key propositions are given in Sections 5 and 6. The diagram below provides

an overview of the proof.

Theorem 1 ⇐ Theorem 2 ⇐ Proposition 2 + Lemma 1 + Lemma B

⇑

Proposition 1 + Lemma 2

2 Reduction to the Unit Interval

Let X and F be as in Theorem 1 and let X be an X -valued ergodic process, defined on an

underlying probability space (Ω,A,P), such that Γ(F ,X) > η > 0. By assumption, there
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exists a number 0 < M < ∞ such that |f | ≤ M for each f ∈ F . Replacing f ∈ F with

f ′ = (f +M)/2M , we may assume without loss of generality that each f ∈ F takes values

in [0, 1]. The proof of the following lemma, which relies on elementary ergodic theory, is

similar to that of Lemma 5 in [1], and is omitted.

Lemma A. Let X be a stationary ergodic process with values in X . If Γ(F : X) > η > 0,

then X is necessarily uncountable, and there exists a stationary ergodic process X̃ with

values in X such that P(X̃i = x) = 0 for each x ∈ X and Γ(F : X̃) > η.

Let µ(·) be the marginal distribution of X. By Lemma A, it suffices to establish Theorem

1 in the case where X is uncountable, and µ(·) is non-atomic. Let λ(·) denote ordinary

Lebesgue measure on the unit interval [0, 1] equipped with its Borel subsets B. By standard

results in real analysis (c.f. Theorem 5.16 of [14]), there is a measure space isomorphism

between (X ,S, µ) and ([0, 1],B, λ). More precisely, there exist Borel measurable sets X 0 ⊆

X and I0 ⊆ [0, 1], and a bijection ψ : X 0 → I0 with the following properties: (i) µ(X 0) =

λ(I0) = 1; (ii) ψ and ψ−1 are measurable with respect to the restricted sigma algebras S∩X 0

and B ∩ I0, respectively; and (iii) µ(A) = λ(ψ(A)) for each A ∈ S ∩ X 0. In particular, the

event E = {Xi ∈ X c0 for some i ≥ 1} has probability zero. By removing E from the

underlying sample space, we may assume without loss of generality that Xi(ω) ∈ X 0 for

each sample point ω and each i ≥ 1.

Define Yi = ψ(Xi) for i ≥ 1. Then the process Y = Y1, Y2, . . . ∈ [0, 1] is stationary and

ergodic with marginal distribution λ. For each function f ∈ F define an associated function

f̃ : [0, 1]→ [0, 1] via the rule

f̃ =

 (f ◦ ψ−1)(u) if u ∈ I0
0 otherwise

and let F̃ = {f̃ : f ∈ F}. It is easy to see that f̃(Yi) = f(Xi), and in particular, that

Ef̃(Y ) = Ef(X). Thus Γm(F̃ : Y) = Γm(F : X) with probability one for each m ≥ 1.

Moreover, if k distinct points u1, . . . , uk ∈ [0, 1] are γ-shattered by F̃ , then necessarily each

uj ∈ I0, and the (distinct) points ψ−1(u1), . . . , ψ−1(uk) ∈ X are γ-shattered by F . It follows

that dimγ(F̃) ≤ dimγ(F). Theorem 1 is therefore a corollary of the following result.

Theorem 2. Let F be a countable family of Borel measurable functions f : [0, 1] → [0, 1],

and let X = X1, X2, . . . ∈ [0, 1] be a stationary ergodic process with Xi ∼ λ. If the asymptotic

discrepency Γ(F : X) > η > 0 then dimγ(F) =∞ for every γ ≤ η/10.
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3 Preliminaries

In this section we define three elementary notions that will be used in the proof of Theorem

2. The first is the segments of a function f : [0, 1] → [0, 1]. The second is the join of a

sequence of families of disjoint sets. The third is an ancestral set in a binary tree. Lemma 1

establishes a simple connection between joins, segments and the gap dimension. Lemma 2

provides a useful bound for obtaining a subtree with good ancestral properties from a large

initial binary tree.

3.1 Segments and Regular Families

Let F and X be as in the statement of Theorem 2, and suppose that Γ(F : X) > η > 0.

Assume without loss of generality that η is rational, and let γ = η/5. Let K = bγ−1c+ 1 if

γ−1 is not an integer, and K = γ−1 otherwise. For each f ∈ F and 1 ≤ k ≤ K define sets

sk(f) =

 f−1[(k − 1) γ, k γ) if 1 ≤ k ≤ K − 1

f−1[(K − 1) γ, 1] if k = K.
(4)

Definition: The sets sk(f) will be called γ-segments of f . Let π(f) = {sk(f) : 1 ≤ k ≤ K}

be the partition of [0, 1] generated by the γ-segments of f . Two segments sk(f) and sk′(f)

will be called adjacent if they correspond to adjacent intervals, equivalently if |k − k′| = 1,

and non-adjacent if |k − k′| ≥ 2.

In order to establish Theorem 2, we first consider families F whose elements satisfy a

topological regularity condition. Given a family F of functions f : [0, 1]→ [0, 1], define the

associated collection of sets

C(F) = {f−1[a, b) : 0 ≤ a < b < 2 rational, and f ∈ F}. (5)

Including values b > 1 ensures that C(F) contains sets of the form f−1[a, 1]. Note that

C(F) is countable if F is countable.

Definition: A family F of measurable functions f : [0, 1]→ [0, 1] is regular if it is countable,

and each element of C(F) is a finite union of intervals.

3.2 Joins and the Gap Dimension

In ergodic theory, the join of a finite collection of sets contains the atoms of their generated

field. Here we employ a minor generalization of this notion.
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Definition: Let D1, . . . ,Dk be finite families sets in [0, 1] such that the elements of each

family are disjoint. The join of D1, . . . ,Dk, denoted
∨k
i=1Di or D1∨· · ·∨Dk, is the collection

of all non empty intersections D1 ∩ · · · ∩Dk where Di ∈ Di for i = 1, . . . , k.

The next lemma establishes a useful connection between the gap dimension of F and

the join of non-adjacent segments of functions f ∈ F . Its proof is based on similar results

in [10] and [1].

Lemma 1. Suppose that for some L ≥ 1 there exists a sub-family F0 ⊆ F of 2L functions,

and a pair k, k′ ∈ [K] of non-adjacent integers such that the join

J =
∨
f∈F0

{sk(f), sk′(f)}

of non-adjacent γ-segments has cardinality 22L. Then dimγ/2(F) ≥ L.

Remark: The conditions of the lemma ensure that each of the possible intersections con-

tained in J is non-empty, and therefore J has maximum cardinality.

Proof: Indexing the elements of F0 in an arbitrary manner by subsets of [L] := {1, . . . , L},

we may write F0 = {fα : α ⊆ [L]}. For i = 1, . . . , L, let xi be any element of the intersection ⋂
α⊆[L],i∈α

sk(fα)

 ∩
 ⋂
α⊆[L],i 6∈α

sk′(fα)

 ,

which is non-empty by assumption. Suppose without loss of generality that k < k′, and let

c = γ(k + k′ − 1)/2. Let β be any subset of [L] and consider the corresponding function

fβ ∈ F0. If i ∈ β, the selection of xi ensures that xi ∈ sk(fβ), and consequently fβ(xi) <

γk < c − γ/2. On the other hand, if i ∈ βc then xi ∈ sk′(fβ), and in this case fβ(xi) ≥

γ(k′ − 1) ≥ c+ γ/2. As β was arbitrary, it follows that dimγ/2(F) ≥ L.

3.3 Binary Trees and Ancestral Sets

Binary trees appear in several key results of the paper. Throughout we consider standard

binary trees T that have a single root, which is assumed to be located at the top of the

tree. Vertices of T are referred to as nodes, and usually denoted by s or t. Each node of T

has either zero or two distinct children and, with the exception of the root, a single parent.

A node with two children is said to be internal; a node with no children is called a leaf.

The set of leaves in a tree T will be denoted by T̃ . A descending path in T is a sequence

of adjacent nodes that proceeds only from parent to child. The depth, or level, of a node
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t ∈ T is the length of the shortest (necessarily descending) path from the root to t. The

set of nodes at level r of T will be denoted T [r]. The depth of T is the maximum depth of

any node in T . We will exclusively consider trees of finite depth, say L, that are complete

in the sense that T [r] contains 2r nodes for r = 0, . . . , L. In this case, T̃ = T [L] and each

node t ∈ T [r] with 0 ≤ r ≤ L− 1 is internal.

Definition: Let T be a binary tree. A node s in T is an ancestor of a node t if there is a

descending path in T from s to t of length greater than or equal to one. A node s will be

called an ancestor of a set A ⊆ T if s is an ancestor of some t ∈ A.

The next Lemma establishes a pigeon-hole type result showing that any large collection

of leaves must have a correspondingly large set of ancestors in some nearby level of the tree.

Lemma 2. Let T be a full binary tree of depth L, and let T̃ denote the 2L leaves of T .

Suppose that there exists a set of leaves S ⊂ T̃ and a constant 0 < c < 1 such that |S| ≥

c2L ≥ 4. Let u = dlog2 c
−1 + 1e. Then there exists a set S′ ⊆ T [l0] with L− u ≤ l0 ≤ L− 1

such that for each node s ∈ S′ both of its children are ancestors of S, and

|S′| ≥ c2L

4L
. (6)

Proof: For l = 1, . . . , L−1, let ml be the number of nodes s at level l that are the ancestor

of some node t ∈ S, and let nl be the number of nodes at level l with the property that

both their children are ancestors of a node t ∈ S. It is easy to see that |S| = mL−1 + nL−1,

and more generally we have

|S| = mL−v + nL−v + nL−v+1 + · · ·+ nL−1 ≤ 2L−v +
L−1∑
l=L−v

nl

for v = 1, . . . , L− 1. Setting v = u, the assumption that |S| ≥ c2L yields

L−1∑
l=L−u

nl ≥ c2L − 2L−u = 2L−u(c2u − 1) ≥ 2L−u,

where the last inequality follows from the definition of u. Let nl0 be the largest value of nl

appearing in the sum above, and let S′ be the nodes at level l0 of T with the property that

both their children are ancestors of S. Then

|S′| = nl0 ≥
2L−u

u
≥ c2L

4u
≥ c2L

4L

where the second inequality follows from the definition of u.
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4 Outline of the Proof of Theorem 2

In this section we present an outline of the proof of Theorem 2. We begin with Proposition

1, which is the key result of the paper. The proposition shows that if F is regular and

Γ(F : X) > 0 then one can associate the nodes of an arbitrarily large binary tree with

segments of select functions in F in such a way that (i) the intersection of segments along

every path from the root to a leaf is non-empty, and (ii) sibling segments are non-adjacent.

The resulting structure will be called an intersection tree.

Proposition 2 refines Proposition 1 using the pigeon-hole principle from Lemma 2. It

ensures that for every finite L ≥ 1 there is a family of L functions in F having non-adjacent

segments with maximal join. The final step in the proof of Theorem 2 is to remove the

regularity condition on F . This is done by means of a measure space isomorphism described

in Lemma B. The proof of Theorem 2 appears in Section 7.

4.1 Intersection Trees

Proposition 1. Let F and X be as in Theorem 2. Suppose that Γ(F : X) > η > 0 and

that F is regular. Then for each L ≥ 1 there exists functions g1, . . . , gL ∈ F and a complete

binary tree T of depth L such that each node t ∈ T is associated with a subset Bt of [0, 1]

in such a way that the following two conditions are satisfied.

(a) For each internal node t ∈ T at level `, the sets Bt′ and Bt′′ associated with its children

t′ and t′′ are equal to non-adjacent segments of g`+1.

(b) For each node t ∈ T , the intersection Wt of the sets Bs appearing along a descending

path from the root to t has non-empty interior.

The proof of Proposition 1 is given in Section 5.

4.2 Maximal Joins

Proposition 2. Let F and X be as in Theorem 2. Suppose that Γ(F : X) > η > 0 and

that F is regular. Let γ = η/5. For each L ≥ 1 there are functions f1, . . . , fL ∈ F and a

pair k, k′ ∈ [K] of non-adjacent integers such that the join

J = {sk(f1), sk′(f1)} ∨ · · · ∨ {sk(fL), sk′(fL)}

of non-adjacent γ-segments has (maximum) cardinality 2L, and every element of J has

positive Lebesgue measure.

The proof of Proposition 2 appears in Section 6 below.
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4.3 Removing Regularity

Together, Lemma 1 and Proposition 2 establishes Theorem 2 in the special case of regular

families. In order to remove the assumption of regularity, we require the following result,

whose proof can be found in [1].

Lemma B. Let C = {C1, C2, . . .} be a countable collection of Borel subsets of [0, 1] such

that the maximum diameter of the elements of the join Jn =
∨n
i=1{Ci, Cci } tends to zero

as n → ∞. Then there exists a Borel-measurable map φ : [0, 1] → [0, 1] and a Borel set

V1 ⊆ [0, 1] of measure one such that: (i) φ preserves Lebesgue measure and is 1:1 on V1;

(ii) the image V2 = φ(V1) and the inverse map φ−1 : V2 → V1 are Borel measurable; (iii)

φ−1 preserves Lebesgue measure; and (iv) for every set C ∈ C there is a set U(C), equal to

a finite union of intervals, such that λ(φ(C)4U(C)) = 0, where 4 is the usual symmetric

difference.

Remark: Lemma B is applied to the family of sets C = C(F). The existence of the

isomorphism φ requires that C be countable, and this leads to the requirement that F be

countable as well.

The proof of Theorem 2 is given in Section 7 below.

5 Proof of Proposition 1

Construction of the intersection tree in Proposition 1 is based on a multi-stage procedure

that is detailed below. At the first stage, we produce a refining sequence J1, J2, . . . of joins

in [0, 1] and simultaneously identify a sequence of functions f1, f2, . . . ∈ F . The join Jn is

generated from selected non-adjacent segments of f1, . . . , fn. The function fn+1 chosen at

step (n+ 1) is an element of F whose average differs from its expectation by at least η on

a sample sufficiently large to ensure that the relative frequency of every element A ∈ Jn
is close to its probability. From Jn and fn+1 we identify a set Gn equal to the union of

the cells in Jn on which the average of fn+1 is far from its expectation. The sets Gn are

used, in turn, to produce a limiting “splitting” set R1 via a weak convergence argument.

This sequential process is repeated in subsequent stages, with the important feature that

the splitting sets R1, . . . , Rs−1 identified at stages 1, . . . , s−1 are used to generate the joins

and the splitting set at stage s.

The proof of Proposition 1 follows the proof of Proposition 3 in [1]. The earlier propo-

sition treats the special case in which the elements of F are indicator functions of sets,
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and hence binary valued. The definition and construction of the splitting sets Rs follow

the arguments in the binary case, the principal difference being that the generalized joins

defined here involve segments rather than sets. The proof of Lemma 4 below and the three

displays preceding it are identical to arguments in [1]. Differences in the proofs emerge from

the focus here on non-adjacent segments. In particular, the use of intersection trees or a

similar hierarchical structure appears to be required, and the arguments that follow Lemma

4 are somewhat more involved than in the binary case.

The proof of Proposition 1 requires that one carefully keep track of the quantities ap-

pearing at each step and stage of the construction, and how these quantities are defined.

For this reason, and due to the differences discussed above, it is not possible to substantially

shorten the proof Proposition 1 by an appeal to the earlier results. We provide a detailed

argument below for completeness.

5.1 Initial Construction

Let F be a countable family of Borel measurable functions f : [0, 1] → [0, 1], and let

X = X1, X2, . . . ∈ [0, 1] be a stationary ergodic process defined on an underlying probability

space (Ω,A,P) such that Xi ∼ λ. Assume that Γ(F : X) > η > 0, and that every element

of C(F) is a finite union of intervals. Let δ = η/12, and note that 0 < δ < 1. For each n ≥ 1

let

Dn = {[ k 2−n, (k + 1) 2−n) : 0 ≤ k ≤ 2n − 2} ∪ {[1− 2−n, 1]}

be the nth order dyadic subintervals of [0, 1], and let D = ∪n≥1Dn. The set A0 consisting

of the endpoints of the intervals from which the elements of C(F) and D are constructed

is countable, and therefore has Lebesgue measure zero. Removing a P-null set of outcomes

from Ω, we may assume that Xi(ω) ∈ Ac0 for each ω ∈ Ω and for every i ≥ 1. (This

assumption is used in the last part of the proof.)

Below we identify a sequence of splitting sets R1, R2, . . . ⊆ [0, 1] in stages, and then use

these sets to construct the intersection tree.

Stage 1. The first stage of the construction proceeds as follows. Let f1 be any function

in F , and suppose that functions f1, . . . , fn ∈ F have already been selected. Let Jn =

Dn ∨ π(f1) ∨ · · · ∨ π(fn) be the join of the dyadic intervals of order n and the γ-segments

of the previously selected functions. Here and in what follows we take γ = η/5. For each

12



ω ∈ Ω, each function g : [0, 1]→ [0, 1], and each m ≥ 1, define the (pointwise) discrepancy

∆ω(g : m) 4=

∣∣∣∣∣ 1
m

m∑
i=1

g(Xi(ω))− Eg(X)

∣∣∣∣∣ , (7)

which measures the difference between the expectation of g(X) and its average over the

sample sequence X1(ω), . . . , Xm(ω). From the ergodic theorem and Proposition 2, it follows

that there exists a sample point ωn+1 ∈ Ω, an integer mn+1 ≥ 1 and a function fn+1 ∈ F

such that

∆ωn+1(IA : mn+1) ≤ δ λ(A) for each A ∈ Jn (8)

and

∆ωn+1(fn+1 : mn+1) > η. (9)

Defining the join Jn+1 = Dn∨π(f1)∨ · · ·∨π(fn+1) and continuing, we may select functions

fn+2, fn+3, . . . ∈ F in a similar fashion.

The relations (8) and (9) together ensure that for many cells A ∈ Jn the average of fn+1

on A differs from its expectation over A. To make this precise, define the family

Hn =
{
A ∈ Jn : ∆ωn+1(fn+1 · IA : mn+1) >

η

2
λ(A)

}
.

As the next lemma shows, the sets in Hn ⊆ Jn occupy a non-trivial fraction of the unit

interval.

Lemma 3. If Gn = ∪Hn is the union of the sets A ∈ Hn, then λ(Gn) ≥ η/6.

Proof: To simplify notation, let ω = ωn+1, f = fn+1, and m = mn+1. Decomposing

∆ω(f : m) over the elements of Jn and applying the triangle inequality, we obtain the

bound

η ≤
∑
A∈Hn

∆ω(f · IA : m) +
∑

A∈Jn\Hn

∆ω(f · IA : m).

By definition of Hn, the second term is at most η/2. The first term is at most∑
A∈Hn

∆ω(f · IA : m)

≤
∑
A∈Hn

[
1
m

m∑
i=1

(f · IA)(Xi(ω)) + E(f · IA)(X)

]

≤
∑
A∈Hn

[
1
m

m∑
i=1

IA(Xi(ω)) + λ(A)

]

≤
∑
A∈Hn

∆ω(A : m) + 2λ(Gn)

≤ (δ + 2)λ(Gn) ≤ 3λ(Gn).

13



where the first inequality follows from the fact that 0 ≤ f ≤ 1. Combining the bounds

above yields the stated inequality.

For each n ≥ 1 define a sub-probability measure λn(B) = λ(B∩Gn) on ([0, 1],B), where

Gn = ∪Hn. The collection {λn} is tight, and is such that λn([0, 1]) ≥ η/6 for each n.

There is therefore a subsequence n(1) < n(2) < · · · such that λn(r) converges weakly to a

sub-probability measure ν1 on ([0, 1],B). It is easy to see that ν1 is absolutely continuous

with respect to λ, that ν1([0, 1]) ≥ η/6, and that the Radon-Nikodym derivative dν1/dλ is

is bounded above by 1. Define R1 = {x : (dν1/dλ)(x) > δ}. From the previous remarks it

follows that

η

6
≤ ν1([0, 1]) =

∫ 1

0

dν1

dλ
dλ =

∫
R1

dν1

dλ
dλ +

∫
Rc1

dν1

dλ
dλ

≤
∫
R1

1dλ+
∫
Rc1

δ dλ ≤ λ(R1) + δ. (10)

As δ = η/12, we have λ(R1) ≥ η/12 > 0. This completes the first stage of the construction.

Further Stages. Subsequent stages follow the general iterative procedure used to construct

R1. Let ωn,s, fn,s, Jn,s, mn,s, Hn,s and Gn,s denote the various quantities appearing at the

nth step of stage s. In particular, let fn,1 = fn be the n’th function produced at stage 1,

and define Jn,1, mn,1, Hn,1 and Gn,1 in a similar fashion.

Suppose that for some s ≥ 2 the construction of the splitting sets R1, . . . , Rs−1 is

complete, and that we wish to construct the set Rs at stage s. Let f1,s be any element of

F , and suppose that f1,s, . . . , fn,s have already been selected. Define the join

Jn,s = Dn ∨
n∨
i=1

π(fi,s) ∨
s−1∨
j=1

{Rj , Rcj}.

It follows from the ergodic theorem and Proposition 2 that there exists a sample point

ωn+1,s ∈ Ω, an integer mn+1,s ≥ 1, and a function fn+1,s ∈ F such that

∆ωn+1,s(IA : mn+1,s) ≤ δ λ(A) for each A ∈ Jn,s (11)

and

∆ωn+1,s(fn+1,s : mn+1,s) > η. (12)

We may then define the join Jn+1,s using fn+1,s and continue in the same fashion. For each

n ≥ 1 define the family

Hn,s =
{
A ∈ Jn,s : ∆ωn+1,s(fn+1,s · IA : mn+1,s) >

η

2
λ(A)

}
14



and Gn,s = ∪Hn,s ⊆ [0, 1]. Lemma 3 ensures that λ(Gn,s) ≥ η/6.

As in stage 1, there is a sequence of integers ns(1) < ns(2) < · · · such that the

sub-probability measures λr,s(B) = λ(B ∩ Gns(r),s) converge weakly as r → ∞ to a sub-

probability measure νs on ([0, 1],B) that is absolutely continuous with respect to λ(·). Define

Rs = {x : (dνs/dλ)(x) > δ}. The argument in (10) shows that λ(Rs) ≥ η/12. In what

follows, we need to consider density points of Rs. To this end, for each s ≥ 1 let

R̃s =
{
x ∈ Rs : lim

α→0

λ((x− α, x+ α) ∩Rs)
2α

= 1
}
.

be the Lebesgue points of Rs. By standard results on differentiation of integrals (c.f. The-

orem 31.3 of Billingsley (1995)), we have λ(R̃s) = λ(Rs) ≥ η/12.

5.2 Existence of the Intersection Tree

Fix an integer L ≥ 1. As the measures of the sets R̃s are bounded away from zero, there exist

positive integers s0 < s1 < . . . < sL such that λ(
⋂L
j=0 R̃sj ) > 0. Define the intersections

Ql =
L−l⋂
j=0

R̃sj

for l = 0, 1, . . . , L, and note that Ql ⊆ Ql+1. In what follows, Bo, B and ∂B denote,

respectively, the interior, closure and boundary of a set B ⊆ [0, 1]. The following result is

a strengthened version of Proposition 1 that incorporates the sets Ql. Its proof completes

the proof of Proposition 1.

Proposition 3. Suppose that Γ(F : X) > η > 0 and that every element of C(F) is a finite

union of intervals. Then there exists functions g1, . . . , gL ∈ F and a complete binary tree T

of depth L such that each node t ∈ T is associated with a subset Bt of [0, 1] subject to the

following conditions:

(a) For each internal node t ∈ T [l], the sets Bt′ and Bt′′ associated with its children t′

and t′′ are equal to non-adjacent η/5-segments of gl+1.

(b) For each node t ∈ T , the intersection Wt of the sets Bs appearing along a descending

path from the root to t has non-empty interior.

(c) If t ∈ T [l] then the intersection W o
t ∩Ql is non-empty.
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Proof of Proposition 3: Let T be a complete binary tree of depth L with root t0, and

let Bt0 = [0, 1]. We will assign sets Bt to the nodes of T on a level-by-level basis, beginning

with the children of the root. We show below that there exists a function g1 ∈ F , and

non-adjacent γ-segments U, V ∈ π(g1), such that Uo ∩Q1 and V o ∩Q1 are non-empty. The

children of t0 may then be associated with U and V , in either order. To begin, choose a

point x1 ∈ Q0, which is non-empty by construction, and let ε = δ/2(δ + 1). It follows from

the definition of the sets R̃sj , that there exists α1 > 0 such that I1
4= (x1 − α1, x1 + α1)

satisfies

λ(I1 ∩Q0) ≥ (1− ε)λ(I1) = 2α1(1− ε). (13)

To simplify notation, let κ = sL. The last display and the definition of Rκ imply that

νκ(I1 ∩Rκ) =
∫
I1∩Rκ

dνκ
dλ

dλ > δ λ(I1 ∩Rκ) ≥ 2α1(1− ε)δ.

Let {nκ(r) : r ≥ 1} be the subsequence used to define the sub-probability νκ. As I1 is an

open set, it follows from the Portmanteau theorem that

lim inf
r→∞

λ(I1 ∩Gnκ(r),κ) ≥ νκ(I1) ≥ νκ(I1 ∩Rκ) > 2α1(1− ε)δ.

Choose r sufficiently large so that λ(I1 ∩ Gnκ(r),κ)) > 2α1(1 − ε)δ and 2−nκ(r) < δ α1/4.

We require the following subsidiary lemma. Its proof is identical to Lemma 4 in [1], but is

included in the Appendix for completeness.

Lemma 4. There exists a set A ∈ Hnκ(r),κ such that A ⊆ I1 and λ(A∩Q1) > 0. Moreover,

A is contained in Q1.

Let g1 = fnκ(r)+1,κ ∈ F . By assumption, each element of π(g1) is a finite union of

intervals, and no random variable Xi takes values in the finite set ∪C∈π(g1)∂C. We argue

that the set A identified in Lemma 4 (and therefore Q1) has non-empty intersection with the

interiors of two non-adjacent segments of g1. As A has positive measure, and the boundary

of each segment of g1 has measure zero, it suffices to exclude the possibility that A intersects

no segments, only one segment, or only two adjacent segments of g1.

As λ(A) > 0 and the segments of g1 form a partition of [0, 1], Amust intersect the interior

of at least one segment of g1. Suppose that A intersects only one segment U = sk(g1) of g1.

Let h(x) = g1(x)− (k − 1)γ, and note that 0 ≤ h(x) ≤ γ for each x ∈ U . In this case,

E(g1 IA)(X) =
∑

C∈π(g1)

E(g1 IA IC)(X) = E(g1 IA IU )(X)

= γ(k − 1)λ(A) + E(h IA)(X). (14)
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Similarly, for each m ≥ 1,

1
m

m∑
i=1

(g1 IA)(Xi) =
1
m

m∑
i=1

∑
C∈π(g1)

(g1 IA IC)(Xi) =
1
m

m∑
i=1

(g1 IA IU )(Xi)

= γ(k − 1)
1
m

m∑
i=1

IA(Xi) +
1
m

m∑
i=1

(h IA)(Xi). (15)

Letting m = mnκ(r)+1,κ, we find that

η

2
λ(A) < ∆w(g1 · IA : m)

≤ γ(k − 1) ∆w(IA : m) + max

{
1
m

m∑
i=1

(h IA)(Xi), E(h IA)(X)

}

≤ γ(k − 1) ∆w(IA : m) + γmax

{
1
m

m∑
i=1

IA(Xi), λ(A)

}

≤ γ(k − 1) ∆w(IA : m) + γ(λ(A) + ∆w(IA : m))

≤ ∆w(IA : m) + γλ(A)

≤ (δ + γ)λ(A).

Here the first inequality follows from the definition of Hnκ(r),κ, the second follows from (14)

and (15), the third follows from the bound on h(·), and last follows from the definition of

m. Comparing the first and last terms above, our definition of δ = η/12 and γ = η/5 yields

a contradiction.

Suppose finally that A intersects only two adjacent segments of g1, say U = sk(g1) and

V = sk+1(g1). Let h(x) be defined as above, and note that 0 ≤ h(x) ≤ 2γ for x ∈ U ∪ V .

Arguing as above, we find that

E(g1 · IA)(X) = γ(k − 1)λ(A) + E(h IA)(X),

and that for each m ≥ 1,

1
m

m∑
i=1

(g1 IA)(Xi) = γ(k − 1)
1
m

m∑
i=1

IA(Xi) +
1
m

m∑
i=1

(h IA)(Xi).

Letting m = mnκ(r)+1,κ, the previous two displays, and arguments like those above, can be

used to show that

η

2
λ(A) < ∆w(g1 · IA : m)

≤ γ(k − 1) ∆w(IA : m) + 2γ(λ(A) + ∆w(IA : m))

≤ (1 + γ) ∆w(IA : m) + 2γλ(A)

≤ ((1 + γ)δ + 2γ)λ(A).
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Comparing the first and last terms, the definition of δ = η/12 and γ = η/5 yields a

contradiction, and we conclude that A intersects the interiors of two non-adjacent segments

U and V of g1. This completes the assignment of sets to the children of the root t0.

Suppose now that for some l ≤ L − 1 we have assigned sets Bt ⊆ [0, 1] to each node

t of T having depth less than or equal to l, in such a way that properties (a) - (c) of the

Proposition hold. There are 2l nodes of T at distance l from the root. Denote these nodes

by 1 ≤ j ≤ 2l, and let Wj be the intersection of the sets Bs appearing on the descending

path from the root t0 of T to node j at level l. By assumption, W o
j ∩ Ql is non-empty:

let xj ∈ W o
j ∩ Ql for each j ∈ [2l]. Select αl+1 > 0 such that, for each j, the interval

Ij
4= (xj − αl+1, xj + αl+1) is contained in W o

j and satisfies

λ(Ij ∩Ql) ≥ (1− ε)λ(Ij) = 2αl+1(1− ε).

Let κ′ = sL−l and let {nκ′(r) : r ≥ 1} be the subsequence used to define the sub-probability

νκ′ . For each interval Ij ,

lim inf
r→∞

λ(Ij ∩Gnκ′ (r),κ′) ≥ νκ′(Ij) ≥ νκ′(Ij ∩Rκ′) > 2αl+1(1− ε)δ.

where the last inequality follows from the previous display, and the fact that Ql ⊆ Rκ′ .

Choose r sufficiently large so that λ(Ij ∩ Gnκ′ (r),κ′) > 2αl+1(1 − ε)δ for each j = 1, . . . , 2l,

and 2−nκ′ (r) < δ αl+1/4.

Applying the proof of Lemma 4 to each interval Ij , we may identify sets A1, A2, . . . , A2l ∈

Hnκ′ (r),κ
′ such that λ(Aj) > 0, Aj ⊆ Ij ⊆W o

j , and Aj ⊆ Ql+1 for each j = 1, . . . , 2l. Define

gl+1 = fnκ′ (r)+1,κ′ ∈ F . Arguments identical to those in the case l = 0 above show that, for

each j, there exist non-adjacent segments Uj , Vj of gl+1 such that Aj ∩Uoj and Aj ∩ V o
j are

non-empty. Assigning the sets Uj and Vj to the left and right children of j in T , in either

order, ensures that property (a) of the proposition is satisfied. For the child t of node j

associated with the set Uj we have Wt = Wj ∩ Uj . It follows from the fact that Aj ⊆ W o
j ,

Aj ∩ Uoj 6= ∅ and Aj ⊆ Ql+1 that W o
t ∩ Ql+1 6= ∅, and therefore properties (b) and (c) of

the proposition are satisfied. The argument for the other child of node j is similar. This

completes the proof of Proposition 3.

6 Proof of Proposition 2

Proof of Proposition 2: Fix L ≥ 1 such that 2L−1/K2 ≥ 4, and let T be the complete

binary tree of depth L described in Proposition 1. Suppose that each interior node in t ∈ T
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is labeled with the indices of the segments assigned to its children: if the segments sk(gr)

and sk′(gr) of gr are assigned to the children of a node t ∈ T [r − 1], then t is assigned the

label `(t) = (k, k′) ∈ [K]2, where [K] = {1, . . . ,K}.

Let L0 = L − 1. By an elementary pigeon-hole argument, there exist non-adjacent

integers k0, k
′
0 ∈ [K] such that the set S0 of nodes t ∈ T [L0] with `(t) = (k0, k

′
0) has

cardinality at least 2L0/K2. (Here K2 is an upper bound on the number of non-adjacent

pairs k, k′ ∈ [K].) Let u0 = dlog2K
2 + 1e.

It follows from Lemma 2 and an additional pigeon hole argument that there exists an

integer L1, a pair k1, k
′
1 ∈ [K] of non-adjacent integers, and a set of nodes S1 ⊆ T [L1] with

the following properties: (i) L0 − u0 ≤ L1 ≤ L0 − 1; (ii) `(t) = (k1, k
′
1) for every t ∈ S1;

(iii) for every t ∈ S1, each child of t is an ancestor of S0; and (iv) |S1| ≥ 2L0/4LK4. In

particular, inequalities (i) and (iv) imply that

|S1| ≥ 2L1

(
2L0−L1

4LK4

)
≥ 2L1

(
1

2LK4

)
≥ 2L0

8LK6
. (16)

If the last term above is greater than or equal to 4, then we may apply Lemma 2 again

to find an integer L2 and a set of nodes S2 ⊆ T [L2] with properties analogous to (i) - (iv)

above. Continuing in this fashion, we obtain integers L0 > L1 > · · · > LR ≥ 0, sets of

nodes Sr ⊆ T [Lr], and non-adjacent pairs kr, k′r ∈ [K] such that for 1 ≤ r ≤ R and for

every node t ∈ Sr, `(t) = (kr, k′r) and both children of t are ancestors of Sr−1. In particular,

using arguments like those in (16), one may show that

|Sr| ≥ 2Lr
(

1
(2LK2)rK2

)
≥ 2L−1

4r ·K2r+1 · (2LK2)r(r+1)/2
,

and therefore R = R(L) can be taken to be the largest integer r ≥ 1 for which the last term

above is greater than 4. In particular, R(L) tends to infinity with L.

From the construction above, and an additional pigeon-hole argument, we may identify

an integer N = N(L) ≥ R(L)/K2 and a subsequence i0 < i1 < · · · < iN of LR, LR−1, . . . , L0

such that (kij , k
′
ij

) = (k, k′) for a fixed non-adjacent pair (k, k′) ∈ [K]2. From the associated

node-sets Si0 , . . . , SiN one may construct an embedded binary subtree To of T all of whose

node labels are equal to (k, k′). To see this, let the root of To be any node s ∈ Si0 . At

each level 0 ≤ r ≤ N − 1 let the left and right children of t ∈ To[r] be (necessarily distinct)

descendants in Sir+1 of the children of t ∈ T . Then it is easy to see that To is a complete

binary tree of depth N .

For r = 0, . . . , N − 1 let hr = gir+1. By construction, each node t ∈ To[r] is contained

in Sir and has label `(t) = (k, k′). Thus the children t′ and t′′ of t in To are associated
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with the segments sk(hr) and sk′(hr) of hr. For each terminal node t ∈ T̃o let Wt be the

intersection of the sets Bs appearing on the descending path (in T ) from the root of To to t.

The construction of To ensures that every member of {Wt : t ∈ T̃o} is contained in a unique

element of the join

J = {sk(h0), sk′(h0)} ∨ · · · ∨ {sl(hN−1), sl′(hN−1)}

Moreover, by Proposition 1, each set Wt has non-empty interior, and positive Lebesgue

measure, and the same is therefore true for each element of J . As N(L) tends to infinity

with L, the lemma follows.

7 Proof of Theorem 2

Proof of Theorem 2: Let F and X be as in the statement of the proposition. Then

Γ(F : X) > η > 0. Let C(F) be the countable family defined in (5). Without loss of

generality, we may assume that F contains the identity function f0(x) = x, and therefore

C(F) satisfies the shrinking diameter condition of Lemma B. Let the sets V1, V2 ⊆ [0, 1] and

map φ(·) be as in the statement of Lemma B.

Define random variables Yi = φ(Xi) for i ≥ 1. Then the process Y = Y1, Y2, . . .

is stationary and ergodic with Yi ∼ λ. For each f ∈ F define an associated function

gf : [0, 1]→ [0, 1] via the rule

gf (u) =

 (f ◦ φ−1)(u) if u ∈ V2

0 if u ∈ V c
2

(17)

and let G = {gf : f ∈ F}. Arguments like those in Section 2 above show that Γm(G : Y) is

equal to Γm(F : X) with probability one for each m ≥ 1, and consequently Γ(G : Y) > η.

Let the constants γ (equal to η/5) and K, and the segments sk(f), be defined as in (4),

and let ε = Γ(G : Y)− η > 0. Choose a finite sequence of rational numbers 0 = a0 < a1 <

· · · < aN = 1 that includes {γk : k = 1, . . . ,K − 1} and is such that maxj |aj − aj−1| < ε/2.

Define intervals Uj = [aj−1, aj) for j = 1, . . . , N − 1, and let UN = [aN−1, 1]. Using (17)

one may verify that for each gf ∈ G,

g−1
f Uj =

 φ(f−1Uj) if 2 ≤ j ≤ N

φ(f−1Uj) ∪ V c
2 if j = 1

,

where the second condition results from the fact that the interval U1 contains zero.
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Let U be the family of subsets of [0, 1] that are equal to finite unions of intervals, and let

A ∼= B denote the fact that A and B are equivalent mod 0, in other words, λ(A4B) = 0.

Fix a function f ∈ F , and let gf be the associated element of G. Lemma B and the fact that

λ(V c
2 ) = 0 imply that there exists sets C1, . . . , CN ∈ U such that g−1

f Uj ∼= Cj for 1 ≤ j ≤ N .

If i 6= j then

λ(Ci ∩ Cj) = λ(g−1
f Ui ∩ g−1

f Uj) = λ(g−1
f (Ui ∩ Uj)) = 0

so that Ci and Cj can intersect only at the endpoints of their constitutive intervals. It follows

that the function hf (u) =
∑N

j=1 aj−1ICj (u) approximates gf in the sense that |gf (u) −

hf (u)| < ε/2 with probability one. Moreover, h−1
f [a, b) ∈ U for all rational a, b.

Let H = {hf : f ∈ F} be the family of simple approximations to the elements of G.

Then C(H) is contained in U , and a straightforward argument shows that Γ(H : Y) > η. Fix

L ≥ 1. As H satisfies the conditions of Proposition 2, there exist functions f1, . . . , fL ∈ F

and a pair of non-adjacent integers k, k′ ∈ [K] such that the join

Jh =
L∨
`=1

{sk(hf`), sk′(hf`)}

has 2L elements, each with positive measure. In order to obtain a full join for the segments

of f1, . . . , fL, we examine how the segments of hf are related to those of f . To this end, let

i < j be such that ai = (k − 1)γ and aj = kγ. Then for every f ∈ F ,

sk(hf ) = h−1
f [(k − 1)γ, kγ) = h−1

f [ai, aj)

=
j−1⋃
r=i

Cr+1
∼=

j−1⋃
r=i

g−1
f Ur+1

= g−1
f [(k − 1)γ, kγ)

∼= φ(f−1[(k − 1)γ, kγ)) = φ(sk(f)).

The same argument applies to sk′(hf ), and therefore every element of Jh is equivalent mod

zero to an element of the join

J ′h =
L∨
`=1

{φ(sk(f`)), φ(sk′(f`))}.

As φ is a bijection almost everywhere, every element of J ′h is equivalent mod zero to a set

of the form φ(A), where A is an element of the join

Jf =
L∨
`=1

{sk(f`), sk′(f`)}.
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As each cell of J ′h has positive Lebesgue measure, the same is true of the cells of Jf . In

particular, Jf has (maximum) cardinality 2L. As L ≥ 1 was arbitrary, Theorem 2 follows

from Lemma 1.

A Appendix

A.1 Proof of Lemma 4

The proof of Lemma 4 appears in [1]; we reproduce it here for completeness.

Proof: Let G = Gnκ(r),κ. The choice of nκ(r) ensures that

(1− ε) δ λ(I1) ≤ λ(I1 ∩G)

= λ(I1 ∩Q1 ∩G) + λ(I1 ∩Qc1 ∩G)

≤ λ(I1 ∩Q1 ∩G) + λ(I1 ∩Qc1)

≤ λ(I1 ∩Q1 ∩G) + ελ(I1)

where the final inequality follows from (13) and the fact that Q0 ⊆ Q1. It follows from the

display and the definition of ε that λ(I1 ∩Q1 ∩G) ≥ δα1. As the collection of sets used to

define the join Jnκ(r),κ includes the dyadic intervals of order nκ(r), each element A of the

join has diameter (and Lebesgue measure) bounded by 2−nκ(r) < δ α1/4. These last two

inequalities imply that

δ α1 ≤ λ(I1 ∩Q1 ∩G) ≤
∑
A

λ(Q1 ∩A) + 2
δ α1

4
,

where the sum is over A ∈ Hnκ(r),κ such that A ⊆ I1. In particular, it is clear that the

sum is necessarily positive, and the first part of the claim follows. Moreover, for any set

A ∈ Hnκ(r),κ the definition of the join Jnκ(r),κ requires that A be contained in either Rkj
or Rckj for each j = 0, . . . , L − 1. If λ(A ∩Q1) > 0 then necessarily A ∩Q1 6= ∅, and these

containment relations imply that A ⊆ Q1. This completes the proof of Lemma 4
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