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We investigate the maximal size of distinguished submatrices of a Gaussian random matrix. Of interest
are submatrices whose entries have an average greater than or equal to a positive constant, and submatri-
ces whose entries are well fit by a two-way ANOVA model. We identify size thresholds and associated
(asymptotic) probability bounds for both large-average and ANOVA-fit submatrices. Probability bounds
are obtained when the matrix and submatrices of interest are square and, in rectangular cases, when the
matrix and submatrices of interest have fixed aspect ratios. Our principal result is an almost sure interval
concentration result for the size of large average submatrices in the square case.
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1. Introduction

A Gaussian random matrix (GRM) is a matrix whose elements are i.i.d. standard normal random
variables. Gaussian random matrices have been a fixture in the application and theory of multi-
variate analysis for many years. Recent work in the field of random matrix theory has provided
a wealth of information about the eigenvalues and eigenvectors of Gaussian and more general,
random matrices (see, e.g., Anderson, Guionnet and Zeitouni [2]). This paper considers a dif-
ferent problem, namely, the maximal size of distinguished submatrices in a Gaussian random
matrix. We consider submatrices that are distinguished in one of two ways: (i) the average of
their entries is greater than or equal to a positive constant, or (ii) the optimal two-way ANOVA
fit of their entries has average squared residual less than a positive constant.

Our goal is to identify maximal size thresholds, and associated probability bounds, for large
average and ANOVA-fit submatrices. Results are obtained when the matrix and the submatrices
of interest are square, and when the matrix and the submatrices of interest are rectangular with
fixed aspect ratios. In each case, the maximal size of a distinguished submatrix grows logarithmi-
cally with the dimension of the matrix and depends, in a polynomial fashion, on the inverse of the
constant that constitutes the distinguishability threshold. In the rectangular case, the aspect ratio
of the submatrix plays a more critical role than the aspect ratio of the matrix itself. Our principal
result establishes almost sure upper and lower bounds for the size of large average submatrices in
the square case. In particular, for n × n Gaussian random matrices, we establish that the size of
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the largest square submatrix with average greater than a positive constant τ is eventually almost
surely within an interval of fixed width that contains the critical value 4τ−2(lnn− ln(4τ−2 lnn)).

Results of the sort established here fall outside the purview of random matrix theory and its
techniques. Nevertheless, random matrix theory does provide some insight into the logarithmic
scale of large average submatrices. This is discussed briefly in Section 1.2 below.

1.1. Bipartite graphs

Our results on large average submatrices can also be expressed in graph-theoretic terms, as every
m × n matrix X is associated in a natural way with a bipartite graph G = (V ,E). In particular,
the vertex set V of G is the disjoint union of two sets V1 and V2, with |V1| = m and |V2| = n,
corresponding to the rows and columns of X, respectively. For each row i ∈ V1 and column
j ∈ V2 there is an edge (i, j) ∈ E with weight xi,j . There are no edges between vertices in V1
or between vertices in V2. With this association, large average submatrices of X are in 1: 1 cor-
respondence with subgraphs of G having large average edge-weight. The complexity of finding
the largest subgraph of G whose average edge weight is greater than a threshold appears to be
unknown. However, it is shown in [4] that a slight variation of this problem, namely finding the
maximum edge weight subgraph in a general bipartite matrix, is NP-complete. A randomized,
polynomial time algorithm that finds a subgraph whose edge weight is within a constant factor
of the optimum is described in [1], but this algorithm cannot readily be adapted to the problem
of identifying the large average submatrices considered here.

1.2. Size thresholds and random matrix theory

The results of this paper are combinatorial in nature and do not rely on the spectral techniques
employed in random matrix theory. Nevertheless, existing results in random matrix theory pro-
vide insights into the relationship between the large average submatrices studied here and the
singular value decomposition. These results indicate that there is a significant gap between the
logarithmic size thresholds at which large average submatrices become significant, and the root-n
size thresholds at which they are detectable by standard spectral methods.

Let W be an m × n Gaussian random matrix, and let τ > 0 be fixed. Define a rank-one matrix
S = (1 + δ)τabt , where δ > 0 and a ∈ {0,1}m, b ∈ {0,1}n are indicator vectors having k and
l non-zero components, respectively. The outer product abt defines a submatrix U whose rows
and columns are indexed by the indicator vectors a and b. Let Y = W + S be the sum of W

and S, which we regard as a perturbed version of S. Suppose that the dimensions m,n grow
in such a way that m/n → α with α ∈ [1,∞), and that the dimensions k, l grow in such a
way that k/ logn → ∞ and k/l remains bounded away from zero and infinity. It follows from
Proposition 4 that the probability of finding any k × l submatrix with average greater than τ

in the unperturbed matrix W is vanishingly small. On the other hand, the average of the k × l

submatrix U of Y has distribution N ((1 + δ)τ, (kl)−1), which is greater than τ with probability
very close to one when k and l are large. We might expect to see evidence of the submatrix U in
the first singular value of the matrix Y , or its associated left and right singular vectors. However,
in a sense we make precise below, this is not the case.
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Let s1(V ) ≥ · · · ≥ sm(V ) denote the ordered singular values of an m × n matrix V , and let
‖V ‖F = ∑

i,j v2
i,j denote its Frobenius norm. As s1(·) is a norm, we have

|s1(Y ) − s1(W)| ≤ s1(Y − W) ≤ ‖Y − W‖F = (1 + δ)2τ 2kl, (1)

where the second inequality makes use of the fact that the Frobenius norm of a matrix is the sum
of the squares of its singular values. By a basic result of Geman [5],

s1(W)

n1/2
→ (1 + α1/2) (2)

with probability one as n tends to infinity. If k = o(m1/2) and l = o(n1/2), inequality (1) implies
that n−1/2|s1(Y ) − s1(W)| → 0 with probability one, and therefore (2) holds with Y in place
of W . In other words, for fixed τ , and dimensions k, l such that logn � k, l � n1/2, the embed-
ded submatrix U of Y is highly significant, but has no effect on the limiting behavior of s1(Y ).
Under the same conditions, U is also not recoverable from the top singular vectors of Y . To be
precise, let u1 and v1 be the left and right singular vectors of Y corresponding to the maximum
singular value s1(Y ). Using results of Paul [8] on the singular vectors of spiked population mod-
els, it can be shown that atu1 and btv1 tend to zero in probability as n tends to infinity. Thus
the row and column index vectors of U are asymptotically orthogonal to the first left and right
singular vectors of Y .

1.3. Overview

The next section contains probability bounds and a finite interval concentration result for the
size of large average submatrices in the square case. Size thresholds and probability bounds for
ANOVA submatrices in the square case are presented in Section 3. Thresholds and bounds in the
rectangular case are given in Section 4. Sections 5–7 contain the proofs of the main results.

2. Thresholds and bounds for large average submatrices

Let W = {wi,j : i, j ≥ 1} be an infinite array of independent N (0,1) random variables, and for
n ≥ 1, let Wn = {wi,j : 1 ≤ i, j ≤ n} be the n × n Gaussian random matrix equal to upper left-
hand corner of W . (The almost sure asymptotics of Theorem 1 requires consideration of matrices
Wn that are derived from a fixed, infinite array.) A submatrix of Wn is an indexed collection
U = {wi,j : i ∈ A,j ∈ B} where A,B ⊆ {1, . . . , n}. The Cartesian product C = A × B will be
called the index set of U , and we will write U = Wn[C]. The dimension of U is |A|× |B|, where
|A|, |B| denote the cardinality of A and B , respectively. Note that rows A need not be contiguous,
and that the same is true of columns B .

Definition. For any submatrix U of Wn with index set C = A × B , let

F(U) = 1

|C|
∑

(i,j)∈C

wi,j = 1

|A||B|
∑

i∈A,j∈B

wi,j
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be the average of the entries of U . Note that F(U) ∼ N (0, |C|−1).

We are interested in the maximal size of square submatrices whose averages exceed a fixed
threshold. This motivates the following definition.

Definition. Fix τ > 0 and n ≥ 1. Let Kτ (Wn) be the largest k ≥ 0 such that Wn contains a k × k

submatrix U with F(U) ≥ τ .

As the rows and columns of a submatrix need not be contiguous, the statistic Kτ (Wn) is
invariant under row and column permutations of Wn. Our immediate goal is to obtain bounds on
the probability that Kτ (Wn) exceeds a given threshold and to identify a threshold for Kτ (Wn)

that governs its asymptotic behavior. To this end, we begin the analysis of Kτ (Wn) using standard
first moment-type arguments, which are detailed below.

Let �k(n, τ ) be the number of k ×k submatrices in Wn having an average greater than or equal
to τ . We begin by identifying the value of k for which E�k(n, τ ) is approximately equal to one.
Let Sk denote the set of all k × k submatrices of Wn. Then

�k(n, τ ) =
∑

U∈Sk

I {F(U) ≥ τ }, (3)

and, consequently,

E�k(n, τ ) = |Sk| · P
(
F(Wk) ≥ τ

) =
(

n

k

)2 (
1 − �(τk)

) ≤
(

n

k

)2

e−τ2k2/2, (4)

where in the last step we have used a standard bound on 1 − �(·). For s ∈ (0, n), define

φn,τ (s) = (2π)−1/2nn+1/2s−s−1/2(n − s)−(n−s)−1/2e−τ2s2/4. (5)

Using the Stirling approximation of
(
n
k

)
, it is easy to see that φn,τ (k) is an approximation of the

square root of the final expression in (4). In particular, the rightmost expression in (4) is less than
2φn,τ (k)2. With this in mind, let s(n, τ ) be any positive, real root of the equation

φn,τ (s) = 1. (6)

The next result shows that s(n, τ ) exists and is unique, and it provides an explicit expression for
its value when τ is fixed and n is large.

Lemma 1. Let τ > 0 be fixed. When n is sufficiently large, equation (6) has a unique root s(n, τ ),
and

s(n, τ ) = 4

τ 2
lnn − 4

τ 2
ln

(
4

τ 2
lnn

)
+ 4

τ 2
+ o(1), (7)

where o(1) → 0 as n → ∞.
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We show below that the asymptotic behavior of the random variables Kτ (Wn) is governed
by the root s(n, τ ) of equation (6). To begin, note that for values of k greater than s(n, τ ), the
expected number of k × k submatrices U of Wn with F(U) ≥ τ is less than one. The next
proposition shows that the probability of seeing such large submatrices is small.

Proposition 1. Let τ > 0 be fixed. When n is sufficiently large,

P
(
Kτ (Wn) ≥ s(n, τ ) + r

) ≤ 2e2/τ 2
n−2r

(
4 lnn

τ 2

)2r

for every r = 1, . . . , n.

The proofs of Lemma 1 and Proposition 1 are given in Section 5. The arguments refine those
in [11], with adaptations to the present setting. The asymptotic nature of the bound in Proposi-
tion 1 results from the o(1) term in s(n, τ ), and, in particular, approximations arising from the
general form of Stirling’s formula. Using a more elementary bound, one may readily obtain a
non-asymptotic result for a size threshold that includes only the leading term of s(n, τ ).

Proposition 2. Let τ > 0 be fixed. Then

P

(
Kτ (Wn) ≥ 4

τ 2
lnn + r

)
≤ n−2r

for every n, r ≥ such that 4
τ 2 lnn + r > 2.

It follows from Proposition 1 and the Borel–Cantelli lemma that, with probability one, Kτ (Wn)

is eventually less than or equal to �s(n, τ )� + 1 ≤ s(n, τ ) + 2. With this bound in mind, it is of
interest to know more about the asymptotic behavior of Kτ (Wn). It turns out that the limiting
distribution of Kτ (Wn) is essentially degenerate. Our principal result, stated in Theorem 1 below,
makes use of a second moment argument in order to obtain an almost sure lower bound on
Kτ (Wn) that is within a constant factor of the upper bound derived from Proposition 1. The
proof is given in Section 7.

Theorem 1. Let Wn, n ≥ 1, be Gaussian random matrices derived from an infinite array W , and
let τ > 0 be fixed. With probability one, when n is sufficiently large,

s(n, τ ) − 4

τ 2
− 12 ln 2

τ 2
− 4 ≤ Kτ (Wn) ≤ s(n, τ ) + 2. (8)

Note that the difference between the upper and lower bounds in Theorem 1 is a constant that
depends on τ , but is independent of the matrix dimension n. In particular, the values of the
random variable Kτ (Wn) are eventually concentrated on an interval that contains s(n, τ ) and
whose width is independent of n. It follows from Theorem 1 that

Kτ (Wn)

4τ−2 logn
→ 1
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almost surely as n → ∞. The lower bound in Theorem 1 can be slightly improved. An examina-
tion of the argument in Lemma 4 in Section 7 shows the inequality of the theorem still holds if
the quantity 12 ln 2 is replaced with any constant greater than 8 ln 2.

Extending earlier work of Dawande et al. [4] and Koyuturk et al. [6], Sun and Nobel [10,11]
obtained a similar, two-point concentration result for the size of largest square submatrix of ones
in an i.i.d. Bernoulli random matrix. Bollobás and Erdős [3] and Matula [7], established analo-
gous results for the clique number of a regular random graph; see [11] for additional references
to work in the binary case. The proof of Theorem 1 relies on a second moment argument, but
differs from the proofs of these earlier results due to the continuous setting. In particular, the
proof makes use of the fact that, under the Gaussian assumption made here, for any k × k sub-
matrix U of W , there exists an upper bound and a lower bound on P(F(U) ≥ τ) whose ratio is
of order τk.

3. Thresholds and bounds for ANOVA submatrices

In this section, we derive bounds like those in Proposition 1 for the size of submatrices whose
entries are well fit by a two-way analysis of variance (ANOVA) model. A statistical introduc-
tion to ANOVA can be found in Scheffé [9]. Roughly speaking, the ANOVA criterion identifies
submatrices whose rows (and columns) are shifts of each other.

Definition. For a submatrix U of Wn with index set A × B , define

G(U) = min

{
1

(|A| − 1)(|B| − 1)

∑
i∈A,j∈B

(wij − ai − bj − c)2
}
,

where the minimum is taken over all real constants {ai : i ∈ A}, {bj : j ∈ B} and c.

Under the ANOVA criterion, a submatrix U will warrant interest if G(U) is less than a pre-
defined threshold. Note that by standard arguments,

G(U) = 1

(|A| − 1)(|B| − 1)

∑
i∈A,j∈B

(wij − wi· − w·j + w··)2,

where wi·, w·j and w·· denote the row, column, and the full submatrix averages, respectively.

Definition. Given 0 < τ < 1, let Lτ (Wn) be the largest value of k such that Wn contains a k × k

submatrix U with G(U) ≤ τ .

Arguments similar to those in the proof of Proposition 1, in conjunction with a probability
upper bound on the left tail of a χ2 distribution, establish the following bound on Lτ (Wn). The
proof is given in Section 6.
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Proposition 3. Let τ > 0 be fixed. When n is sufficiently large,

P
(
Lτ (Wn) ≥ t (n, τ ) + r

) ≤ 2e1+2/h(τ)

(
lnn

h(τ)

)2r+2

n−2r (9)

for every r = 1, . . . , n, where

t (n, τ ) = 4

h(τ)
lnn − 4

h(τ)
ln

(
4

h(τ)
lnn

)
+ 4

h(τ)
+ 2

and

h(τ) = 1 − τ − log(2 − τ). (10)

Proposition 3 and the Borel–Cantelli lemma imply that Lτ (Wn) ≤ t (n, τ ) + 1, eventually,
almost surely. The arguments used to lower bound Kτ (Wn) in Theorem 1 do not extend readily
to Lτ (Wn); we are not aware if a similar interval-concentration result holds in this case.

4. Thresholds and bounds for rectangular submatrices

The probability bounds of Propositions 1 and 3 can be extended to non-square submatrices of
non-square matrices by adapting the methods of proof, detailed in Sections 5 and 6, respectively.
We present the resulting bounds below, without proof. Similar results concerning submatrices of
1s in binary matrices can be found in [11].

Definition. Let W(m,n) denote an m × n Gaussian random matrix, and let α > 0 and β ≥ 1 be
fixed aspect ratios for the sample matrix and target submatrix, respectively.

a. For τ > 0, let Kτ (W : n,α,β) be the largest integer k such that there exists a �βk� × k

submatrix U in W(�αn�, n) with F(U) ≥ τ .
b. For 0 < τ < 1, let Lτ (W : n,α,β) be the largest integer k such that there exists a �βk� × k

submatrix U in W(�αn�, n) with G(U) ≤ τ .

Proposition 4. Fix τ > 0 and any ε > 0. When n is sufficiently large,

P
(
Kτ (W : n,α,β) ≥ s(n, τ,α,β) + r

) ≤ n−(β+1)r

(
lnn

τ 2

)(β+1+ε)r

for each 1 ≤ r ≤ n, where

s(n, τ,α,β) = 2(1 + β−1)

τ 2
lnn − 2(1 + β−1)

τ 2
ln

[
2(1 + β−1)

τ 2
lnn

]
+ 2

τ 2
lnα + C1(β, τ )

for some constant C1(β, τ ) > 0.
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Proposition 5. Fix 0 < τ < 1 and any ε > 0. When n is sufficiently large,

P
(
Lτ (W : n,α,β) ≥ t (n, τ,α,β) + r

) ≤ n−(β+1)r

(
lnn

h(τ)

)(β+1+ε)r

for each 1 ≤ r ≤ n, where

t (n, τ,α,β) = 2(1 + β−1)

h(τ )
lnn − 2(1 + β−1)

h(τ )
ln

[
2(1 + β−1)

h(τ )
lnn

]
+ h(τ)−1 lnα + C2(β, τ )

for some constant C2(β, τ ) > 0, where h(τ) is defined as in (10).

Remark. The bounds in Propositions 4 and 5 have a similar form. In each case, the bound is of
the form n−(β+1)r times a polynomial in lnn, and the leading term in s(·) and t (·) are of the form
(1+β−1) lnn times a function of the threshold τ . The aspect ratio β of the target submatrix plays
a critical role in both the size threshold and the probability bound. This reflects the dependence
of the size of a �βk� × k submatrix on β . By contrast, the aspect ratio α of the sample matrix
plays a secondary role, its logarithm appearing only in the constant term of s(·) and t (·).

5. Proof of Lemma 1 and Proposition 1

Proof of Lemma 1. Let τ > 0 be fixed, and note that

lnφn,τ (s) =
(

n + 1

2

)
lnn −

(
s + 1

2

)
ln s −

(
n − s + 1

2

)
ln(n − s) − τ 2s2

4
− 1

2
ln 2π. (11)

Differentiating lnφn,τ (s), with respect to s, yields

∂ lnφn,τ (s)

∂s
= 1

2(n − s)
+ ln(n − s) − 1

2s
− ln s − sτ 2

2
.

The last expression is negative when 2τ−2 lnn < s < 4τ−2 lnn; we now consider the value
of lnφn,τ (s) for s outside this interval. A straightforward calculation shows that for 0 < s ≤
2τ−2 lnn,

lnφn,τ (s)s

(
ln(n − 2τ−2 lnn) − sτ 2

4
− ln lnn − ln 2τ−2

)
− 1

2
ln s − 1

2
ln 2π,

which is positive when n is sufficiently large. In order to address the other extreme, note that,
from (11), we have

lnφn,τ (s) ≤ s

(
ln(n − s) − sτ 2

4
− ln s

)
− 1

2
ln s + (n + 1/2) ln

(
n

n − s

)
. (12)
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It is easy to check that the right-hand side of the above inequality is negative when s > n − 2.
Considering separately the cases s + 2 < n < (2 ln 2)−1s ln s and n ≥ (2 ln 2)−1s ln s, one may
upper bound the final term above by (s ln s)/2 + (ln 2)/2 and 2s + (ln 2)/2, respectively. Thus,
for s < n − 2, we have

lnφn,τ (s) ≤ s

(
ln(n − s) − sτ 2

4
− ln s

)
− 1

2
ln s + 2s + s ln s

2
+ ln 2

2
,

and, in particular, for 4τ−2 lnn ≤ s < n − 2,

lnφn,τ (s) ≤ s

(
2 − ln s

2

)
− 1

2
ln s + ln 2

2
< 0

when n (and therefore s) is sufficiently large. Thus for large n there exists a unique solution
s(n, τ ) of the equation φn,τ (s) = 1 with s(n, τ ) ∈ (2τ−2 lnn,4τ−2 lnn).

Taking logarithms of both sides of the equation φn,τ (s) = 1 and rearranging terms yields the
expression

1

2
ln

n

n − s
+ n ln

n

n − s
−

(
s + 1

2

)
ln s + s ln(n − s) − τ 2s2

4
= ln 2π

2
. (13)

The argument above shows that the (unique) solution of this equation belongs to the interval
(2τ−2 lnn,4τ−2 lnn), so we consider the case in which s and n/s tend to infinity with n. Dividing
both sides of (13) by s yields

ln(n − s) − sτ 2

4
− ln s = −1 + O

(
ln s

s

)
,

which, after adding and subtracting terms, can be rewritten in the equivalent form

lnn − sτ 2

4
− ln lnn = ln

(
s

lnn

)
− ln

(
n − s

n

)
− 1 + O

(
ln s

s

)
. (14)

For each n ≥ 1, define R(n) via the equation

s(n, τ ) = 4τ−2 lnn − 4τ−2 ln lnn + R(n).

Plugging the last expression into (14), we find that R(n) = 4
τ 2 (1 − ln 4

τ 2 ) + o(1), and the result
follows from the uniqueness of s(n, τ ). �

Proof of Proposition 1. Fix τ > 0. If �s(n, τ )� + r > n, the bound (1) holds trivially; in the
case of equality, it follows from a standard Gaussian tail bound when n is sufficiently large. Fix
n ≥ 1 for the moment, and suppose that l = �s(n, τ )� + r ≤ n − 1. By Markov’s inequality and
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the definition of φn,τ (·),
P

(
Kτ (Wn) ≥ s(n, τ ) + r

) = P
(
Kτ (Wn) ≥ l

)
= P

(
�l(n, τ ) ≥ 1

)
(15)

≤ E�l(n, τ )

≤ 2φ2
n,τ (l) ≤ 2φ2

n,τ

(
s(n, τ ) + r

)
.

Let γ = e−τ2/4, and, to reduce notation, denote s(n, τ ) by sn. Under the constraint on r , a
straightforward calculation shows that one can decompose the final term above as follows:

2φ2
n,τ (sn + r) = 2φ2

n,τ (sn)γ
2rsn[An(r)Bn(r)Cn(r)Dn(r)]2 (16)

where

An(r) =
(

n − r − sn

n − sn

)−n+r+sn−1/2

, Bn(r) =
(

r + sn

sn

)−sn−1/2

,

Cn(r) =
(

n − sn

r + sn
γ sn

)r

, Dn(r) = γ r2
.

It is enough to bound the right-hand side of (16) as n increases, and r = r(n) is such that
�s(n, τ )� + r ≤ n − 1. By definition, φn,τ (sn) = 1, and

max
r≥1

2γ 2rsn

n−2r (4 lnn/τ 2)2r
→ 0 as n → ∞.

Thus it suffices to show that the product An(r)Bn(r)Cn(r)Dn(r) is uniformly bounded in r . To
begin, note that for any fixed 0 < δ < 4,

Cn(r)
1/r = n − sn

r + sn
γ sn ≤ n

sn
γ sn ≤ 4

4 − δ
e−1+o(1).

The last term will be less than one when δ is sufficiently small and n is large. The term Bn(r) ≤ 1
for each r ≥ 1, so it only remains to show that maxr≥1 An(r) ·Dn(r) is bounded as a function of n.
A straightforward calculation shows that lnAn(r) ≤ r , and consequently, ln(An(r) · Dn(r)) ≤
r − τ 2r2

4 , a quadratic function of r that is bounded from above by 1/τ 2. �

Proof of Proposition 2. Let k = �4τ−2 lnn� + r ≥ 3. Following the argument in (15), we find
that

P
(
Kτ (Wn) ≥ k

) ≤ E�k(n, τ ) =
(

n

k

)2

exp

{
−τ 2k2

2

}

≤
(

en

k

)2k

exp

{
−τ 2k2

2

}
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= exp

{
2k(1 + lnn − ln k) − τ 2k2

2

}

= exp

{
2k

(
1 + lnn − ln k − τ 2k

4

)}

≤ exp

{
2k

(
1 − ln k − τ 2

4
r

)}

≤ exp

{
−kτ 2r

2

}

≤ n−2r .

The second inequality above makes use of the standard bound

(
n

k

)
≤

(
en

k

)k

.

The penultimate inequality follows from the fact that k ≥ 3. �

6. Proof of Proposition 3

For any k × k submatrix U of the Gaussian random matrix Wn, it follows from standard argu-
ments that (k − 1)2G(U) has a χ2 distribution with (k − 1)2 degrees of freedom. In order to
bound the quantity P(G(U) ≤ τ), which arises in the analysis of Lτ (Wn), we require an initial
result relating the right and left tails of the χ2 distribution.

Lemma 2. Suppose that X ∼ χ2
 for some  ≥ 3. Then for 0 < t <  − 2 we have

P(X ≤ t) ≤ P(X ≥ 2 − 4 − t).

Proof. Let f denote the density function of X and let 0 < t <  − 2. Since

P(X ≤ t) =
∫ t

0
f (s)ds and

P(X ≥ 2 − 4 − t) ≥
∫ 2−4

2−4−t

f (s)ds,

it suffices to show that

f (s)

f (2 − 4 − s)
≤ 1 for all 0 < s <  − 2. (17)
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To this end, note that the ratio in (17) can be rewritten as follows:

f (s)

f (2 − 4 − s)
= s(−2)/2e−s/2

(2 − 4 − s)(−2)/2e−(2−4−s)/2

=
[(

1 − 2 − 4 − 2s

2 − 4 − s

)
e2(−2−s)/(−2)

](−2)/2

(18)

=
[(

1 − 1

u

)
e2/(2u−1)

](−2)/2

with u = 2 − 4 − s

2 − 4 − 2s
.

As s tends to  − 2, u tends to infinity, and therefore

lim
s→(−2)

f (s)

f (2 − 4 − s)
= lim

u→∞

(
1 − 1

u

)
e2/(2u−1) = 1.

Thus, it suffices to show that for u ∈ (1,∞), the final term in (18) is an increasing function of u.
Differentiating with respect to u we find that

d

du

(
1 − 1

u

)
e2/(2u−1) = (2u − 1)2 − 4(u − 1)u

u2(2u − 1)2
e2/(2u−1) > 0

where the inequality follows from the fact that u > 1. Inequality (17) follows immediately. �

Proof of Proposition 3. To begin, note that if X has a χ2 distribution with  degrees of freedom,
then by a standard Chernoff bound,

P(X ≥ r) ≤ min
0<s<1/2

(1 − 2s)−/2e−sr =
[(



r

)
e(r/−1)

]−/2

. (19)

Let 0 < τ < 1 be fixed. Fix n ≥ 1 for the moment and let r ≥ 1 be such that k = �t (n, τ )�+r ≤
n, where t (n, τ ) is defined as in the statement of Proposition 3. Let U be any k × k submatrix of
Wn, and let  = (k − 1)2. As noted above, the random variable G(U) has a χ2 distribution with
 degrees of freedom, so by Lemma 2 and inequality (19),

P
(
G(U) ≤ τ

) = P
(
G(U) ≤ τ

) ≤ P
(
G(U) ≥ (2 − τ) − 4

)
≤ exp

{
−

2

[
(2 − τ) − 4


− 1 + ln



(2 − τ) − 4

]}
(20)

= exp

{
−

2
[(1 − τ) − ln(2 − τ)]

}
exp

{[
2 + 

2
ln

(
1 − 4

(2 − τ)

)]}

≤ exp

{
−

2
[(1 − τ) − ln(2 − τ)]

}
exp

{
2 − 2

2 − τ

}
.
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The second term in the last display is, at most, e. It follows from a first moment argument that

P
(
Lτ (Wn) ≥ k

) ≤
(

n

k

)2

P
(
G(U) ≤ τ

)

≤ e

(
n

k

)2

q(k−1)2

≤ e

(
n

k − 1

)2

q(k−1)2 · n2,

where

q = exp
{ 1

2 [−(1 − τ) + ln(2 − τ)]}.
The quantity h(τ) = (1 − τ) − ln(2 − τ) ≥ 0 as 0 < τ < 1. Define

τ0 = √
h(τ) = √

(1 − τ) − ln(2 − τ),

and note that

k =
⌈

4

h(τ)
lnn − 4

h(τ)
ln

(
4

h(τ)
lnn

)
+ 4

h(τ)

⌉
+ 2 + r

≥ s(n, τ0) + 2 + r,

where s(n, τ0) is defined as in Lemma 1. Following the argument after inequality (15) in the
proof of Proposition 1, and using the monotonicity of φn,τ0 for sufficiently large n, we find that

(
n

k − 1

)2

q(k−1)2 =
(

n

k − 1

)2

e−τ2
0 (k−1)2/2

≤ 2φ2
n,τ0

(k − 1)

≤ 2φ2
n,τ0

(
s(n, τ0) + r + 1

)
≤ 2e2/τ 2

0

(
lnn

τ 2
0

)2r+2

n−2r−2

= 2e2/h(τ)

(
lnn

h(τ)

)2r+2

n−2r−2.

The result then follows from (21). �

7. Proof of Theorem 1

In what follows we make use of standard bounds on the tails of the Gaussian distribution, namely
that (3s)−1e−s2/2 ≤ 1 −�(s) ≤ s−1e−s2/2 for s ≥ 3. The proof of Theorem 1 is based on several
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preliminary results. The first result bounds the ratio of the variance of �k(τ,n) and the square of
its expected value, a quantity that later arises from an application of Chebyshev’s inequality.

Lemma 3. Fix τ > 0. There exist integers n0, k0 ≥ 1 and a positive constant C depending on τ

but independent of k and n, such that for any n ≥ n0 and any k ≥ k0,

Var�k(τ,n)

(E�k(τ, n))2
≤ Ck4

k∑
l=1

k∑
r=1

(
k
l

)(
n−k
k−l

)
(
n
k

)
(
k
r

)(
n−k
k−r

)
(
n
k

) exp

{
rlτ 2

2

(
1 + k2 − rl

k2 + rl

)}
. (21)

Proof. Let Sk denote the collection of all k × k submatrices of Wn. It is clear that

E�k(n, τ ) =
∑

U∈Sk

P
(
F(U) > τ

) =
(

n

k

)2 (
1 − �(kτ)

)
. (22)

In a similar fashion, we have

E�2
k (n, τ ) =

∑
Ui,Uj ∈Sk

P
(
F(Ui) > τ and F(Uj ) > τ

)
.

Note that the joint probability in the last display depends only on the overlap between the sub-
matrices Ui and Uj . For 1 ≤ r, l ≤ k define

G(r, l) = P
(
F(U) > τ and F(V ) > τ

)
,

where U and V are two fixed k × k submatrices of W having r rows and l columns in common.
Note that G(r, l) = 0 if 2k − r > n or 2k − l > n. A straightforward counting argument shows
that

E�2
k (n, τ ) =

k∑
r=0

k∑
l=0

(
n

k

)2 (
k

r

)(
n − k

k − r

)(
k

l

)(
n − k

k − l

)
G(r, l).

In particular,

Var�k(n, τ )

(E�k(n, τ ))2
=

k∑
r=0

k∑
l=0

(
k
l

)(
n−k
k−l

)
(
n
k

)
(
k
r

)(
n−k
k−r

)
(
n
k

) · G(r, l)

(1 − �(kτ))2
− 1

≤
k∑

r=1

k∑
l=1

(
k
l

)(
n−k
k−l

)
(
n
k

)
(
k
r

)(
n−k
k−r

)
(
n
k

) [
G(r, l)

(1 − �(kτ))2
− 1

]
.

Here we have used the fact that
(
k
l

)(
n−k
k−l

)
/
(
n
k

)
is a probability mass function, and that G(r,0)

and G(0, l) are either equal to zero or equal to (1 − �(kτ))2. When kτ ≥ 3 we have (1 −
φ(kτ))2 ≥ (3kτ)−2e−k2τ 2

. It therefore suffices to show that for 1 ≤ r, l ≤ k, such that 2k − r ≤ n
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and 2k − l ≤ n, one has

G(r, l) ≤ Ck2 exp

{
−k2τ 2 + rlτ 2

2

(
1 + k2 − rl

k2 + rl

)}
, (23)

where C > 0 depends on τ but is independent of k and n. Inequality (23) is readily established
when r = l = k, so we turn our attention to bounding the quantity G(r, l) when it is positive and
1 ≤ rl < k2. In this case

G(r, l) =
√

rl√
2π

∫ ∞

−∞
e−rlt2/2P

(
F(U ∩ V c) ≥ k2τ − rlt√

k2 − rl

)2

dt,

where U,V are submatrices of Wn having r rows and l columns in common. Let �(x) = 1 −
�(x). Note that G(r, l) = D0 + D1 where

D0 =
√

rl√
2π

∫ ∞

−∞
e−rlt2/2�

2
(

k2τ − rlt√
k2 − rl

)
I {k2τ − rlt < 1}dt (24)

and

D1 =
√

rl√
2π

∫ ∞

−∞
e−rlt2/2�

2
(

k2τ − rlt√
k2 − rl

)
I {k2τ − rlt ≥ 1}dt. (25)

Consider first the term D1 defined in (25). As rl �= k2 and k2τ − rlt ≥ 1, the normal tail bound
yields

�

(
k2τ − rlt√

k2 − rl

)
≤

√
k2 − rl√

2π(k2τ − rlt)
exp

{
− (k2τ − rlt)2

2(k2 − rl)

}

= O
(√

k2 − rl
)

exp

{
− (k2τ − rlt)2

2(k2 − rl)

}
.

Plugging the last expression into (25), the exponential part of the resulting integrand is

− (k2τ − rlt)2

(k2 − rl)
− rlt2

2
,

which (after lengthy but straightforward algebra) can be expressed as

−k2τ + rlτ 2

2

(
1 + k2 − rl

k2 + rl

)
− rl(k2 + rl)

2(k2 − rl)

(
(τ − t) + τ

(
k2 − rl

k2 + rl

))2

.

It then follows that

D1 ≤ O(k2 − rl) exp

{
−k2τ 2 + rlτ 2

2

(
1 + k2 − rl

k2 + rl

)}

×
√

k2 − rl

k2 + rl
×

∫ ∞

−∞

√
rl(k2 + rl)

k2 − rl
exp

{
− rl(k2 + rl)

2(k2 − rl)

(
τ − t + τ(k2 − rl)

k2 + rl

)2}
dt.
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The term preceding the integral is less than one, and the integral is equal to one. Thus D1 is less
than the right-hand side of (23).

We next consider the term D0 defined in (24). Note that k2τ − rlt < 1 is equivalent to t >

(k2τ − 1)/rl, and therefore

D0 ≤
∫ ∞

(k2τ−1)/rl

√
rl√
2π

e−rlt2/2 dt = �

(
k2τ − 1√

rl

)
≤ k

√
rl√

2π(k2τ − 1)
e−(k2τ−1)2/(2rl)−lnk.

Comparing the last term above with (23), it suffices to show that when k is sufficiently large,

(k2τ − 1)2

2rl
+ lnk ≥

(
k2 − rl

2

)
τ 2

or, equivalently,

(k2 − rl)2τ 2 − 2k2τ + 1 + 2rl ln k ≥ 0. (26)

Suppose first that rl ≥ k2 − k/
√

ln k. In this case, the left-hand side of the expression above is,
at least,

−2k2τ + 1 + 2rl lnk ≥ −2k2τ + 1 + 2
(
k2 − k/

√
ln k

)
lnk > 0

when k is sufficiently large. Suppose now that k2 − rl > k/
√

ln k. As a quadratic function of τ ,
the left-hand side of (26) takes its minimum at τ = k2/(k2 − rl)2, and the corresponding value
is rl[−2k2 + rl + 2(k2 − rl)2 ln k]/(k2 − rl)2. In this case, the assumption k2 − rl > k/

√
ln k

implies

−2k2 + rl + 2(k2 − rl)2 ln k > rl > 0.

This establishes (26) and complete the proof. �

Lemma 4. Let τ > 0 be fixed. When k is sufficiently large, for every integer n satisfying the
condition

k ≤ 4

τ 2
lnn − 4

τ 2
ln

(
4

τ 2
lnn

)
− 12 ln 2

τ 2
(27)

we have the bound

Var�k(τ, n)

(E�k(τ, n))2
≤ k−2.

Remark. For the proof of Theorem 1, it is enough to show that the sum over k of the ratio above
is finite, and, for this purpose, the upper bound k−2 is sufficient.

Proof of Lemma 4. Let n satisfy condition (27). By Lemma 3, it suffices to show that

k4
k∑

l=1

k∑
r=1

(
k
l

)(
n−k
k−l

)
(
n
k

)
(
k
r

)(
n−k
k−r

)
(
n
k

) exp

{
rlτ 2

2

(
1 + k2 − rl

k2 + rl

)}
≤ k−2. (28)
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In order to establish (28), we will show that each term in the sum is less than k−8. To begin, note
that (

k
l

)(
n−k
k−l

)
(
n
k

) ≤
(
k
l

)
kl(n − k)k−l

(n − k)k
=

(
k

l

)
kl(n − k)−l ,

and that (n − k)−l = O(n−l) when l ≤ k = O(n1/2). Thus for some constant C > 0,

(
k
l

)(
n−k
k−l

)
(
n
k

)
(
k
r

)(
n−k
k−r

)
(
n
k

) ≤ C

(
k

r

)(
k

l

)
kr+ln−(r+l).

Rewriting (27) as lnn ≥ τ 2k
4 + ln( 4

τ 2 lnn) + 3 ln 2 yields the bound

n−(r+l) exp

{
rlτ 2

2

(
1 + k2 − rl

k2 + rl

)}

≤ e−3(r+l) ln 2
(

4

τ 2
lnn

)−(r+l)

exp

{
τ 2

2

(
rl

2k2

k2 + rl
− k

2
(r + l)

)}
.

Combining the last three displays, and using the fact that k ≤ 4
τ 2 lnn by assumption, it suffices to

show that (
k

r

)(
k

l

)
e−3(r+l) ln 2 exp

{
τ 2

2

(
rl

2k2

k2 + rl
− k

2
(r + l)

)}
≤ k−8. (29)

In order to establish (29), we consider two cases for r + l. Suppose first that r + l ≤ 3k
4 . By

elementary arguments,

(
k

r

)(
k

l

)
≤

(
2k

r + l

)
≤ (2k)r+l and rl

2k2

k2 + rl
≤ (r + l)2

4

2k2

k2 + rl
≤ (r + l)2

2
.

It follows from these inequalities that

(
k

r

)(
k

l

)
exp

{
τ 2

2

[
rl

2k2

k2 + rl
− k

2
(r + l)

]}

≤ exp

{
τ 2

2

[
(r + l)2

2
− k

2
(r + l)

]
+ (r + l) ln 2k

}

= exp

{
τ 2(r + l)

2

[
(r + l)

2
− k

2
+ 2 ln 2k

τ 2

]}

≤ exp

{
τ 2(r + l)

2

[
3k

8
− k

2
+ 2 ln 2k

τ 2

]}
.
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As the exponent above is negative when k is sufficiently large, (29) follows. Suppose now that
r + l ≥ 3k

4 . From the simple bounds r + l ≥ 2
√

rl and k2 + rl ≥ 2
√

k2rl, we find that

rl
2k2

k2 + rl
− k

2
(r + l) ≤ 2rlk2

2
√

k2rl
− k

√
rl = 0,

and it suffices to bound the initial terms in (29). But, clearly,(
k

r

)(
k

l

)
e−3(r+l) ln 2 ≤ 22k · 2−9k/4,

which is less than k−8 when k is sufficiently large. �

Proof of Theorem 1. Proposition 1 and the Borel–Cantelli lemma imply that eventually, almost
surely, Kτ (Wn) ≤ �s(n, τ )� + 1. Thus, we only need to establish an almost sure lower bound on
Kτ (Wn). To this end, define functions

f (n) = 4

τ 2
lnn − 4

τ 2
ln

(
4

τ 2
lnn

)
− 12 ln 2

τ 2
and g(k) = min{n ≥ 1, �f (n)� = k}

for integers n ≥ 1 and k ≥ 1, respectively. It is easy to see that f (n) is strictly increasing for large
values of n, and clearly f (n) tends to infinity as n tends to infinity. A straightforward argument
shows that g(k) has the same properties. Thus for every sufficiently large integer n, there exists
a unique integer k = k(n) such that g(k) ≤ n < g(k + 1).

Fix m ≥ 1 and consider the event Am that for some n ≥ m the random variable Kτ (Wn) is less
than the lower bound specified in the statement of the theorem. More precisely, define

Am =
⋃
n≥m

{
Kτ (Wn) ≤ s(n, τ ) − 12 ln 2

τ 2
− 4

τ 2
− 3

}
.

To establish the lower bound, it suffices to show that P(Am) → 0 as m → ∞. To begin, note that
when m is large,

Am ⊆
⋃

k≥�f (m)�

⋃
g(k)≤n<g(k+1)

{
Kτ (Wn) ≤ s(n, τ ) − 12 ln 2

τ 2
− 4

τ 2
− 4

}
.

Fix n ≥ m sufficiently large, and let k = k(n) be the unique integer such that g(k) ≤ n < g(k+1).
The definition of g(k) and the monotonicity of f (·) ensures that k = �f (g(k))� ≤ f (n) < k + 1.
In conjunction with the definition of f (n) and Lemma 1, this inequality implies that

1 = k + 1 − k > f (n) − �f (g(k))� ≥ f (n) − f (g(k))

= s(n, τ ) − s(g(k), τ ) + o(1),

and therefore s(n, τ ) < s(g(k), τ ) + 1 + o(1). Define

r(k) =
⌊
s(g(k), τ ) − 12 ln 2

τ 2
− 4

τ 2

⌋
.
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From the bound on s(n, τ ) above and the fact that Kτ (Wg(k)) ≤ Kτ (Wn), we have

{
Kτ (Wn) ≤ s(n, τ ) − 12 ln 2

τ 2
− 4

τ 2
− 3

}
⊆ {

Kτ

(
Wg(k)

) ≤ r(k) − 1 + o(1)
}

⊆ {
Kτ

(
Wg(k)

) ≤ r(k) − 1
}
,

where the last relation makes use of the fact that Kτ and r(k) are integers. Thus we find that

Am ⊆
⋃

k≥�f (m)�

{
Kτ

(
Wg(k)

) ≤ r(k) − 1
}
.

Consider the events above. For fixed k,

P
(
Kτ

(
Wg(k)

) ≤ r(k) − 1
) = P

(
�r(k)(τ, g(k)) = 0

) ≤ Var�r(k)(τ, g(k))

(E�r(k)(τ, g(k)))2
(30)

where we have used the fact that for a non-negative integer-valued random variable X

P(X = 0) ≤ P(|X − EX| ≥ EX) ≤ VarX

(EX)2
,

by Chebyshev’s inequality. As r(k) ≤ f (g(k)), Lemma 4 ensures that the final term in (30) is
less than k−2, and the Borel–Cantelli lemma then implies that P(Am) → 0 as m → ∞. This
completes the proof of Theorem 1. �
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