STOR 655 Homework 2

1. Let $X \sim \mathcal{N}_{d}(\mu, \Sigma)$, and let $A \in \mathbb{R}^{k \times d}$ and $B \in \mathbb{R}^{l \times d}$ be matrices. Show that the random vectors $Y=A X$ and $Z=B X$ are independent if and only if $A \Sigma B^{T}=0$.
2. Show that if $X \sim \mathcal{N}_{d}(\mu, \Sigma)$ and $U=X^{T} A X$ then $\mathbb{E} U=\operatorname{tr}(A \Sigma)+\mu^{T} A \mu$.
3. Let $X \sim \mathcal{N}(0,1)$ and let f be a continuously differentiable real-valued function such that $\mathbb{E}\left|f^{\prime}(X)\right|<\infty$. In class we established the identity $\mathbb{E}[X f(X)]=\mathbb{E} f^{\prime}(X)$.
a. Extend the identity above to the case $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$
b. Show that if $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ then $\mathbb{E}[(X-\mu) f(X)]=\sigma^{2} \mathbb{E} f^{\prime}(X)$
4. (Stein's Identity for Covariance) Let $X, Y \in \mathbb{R}$ be jointly normal random variables with mean zero, and let f be a continuously differentiable real-valued function satisfying appropriate integrability conditions.
a. Argue that we can write $X=a Z_{1}+b Z_{2}$ and $Y=b Z_{1}+c Z_{2}$ where Z_{1}, Z_{2} are independent standard normal random variables, and a, b, c are real constants.
b. Find $\operatorname{Cov}(X, Y)$ in terms of a, b, c.
c. Show that $\operatorname{Cov}(f(X), Y)=\mathbb{E} f^{\prime}(X) \operatorname{Cov}(X, Y)$. Hint: Use the representations of X and Y in terms of Z_{1} and Z_{2}. Apply Stein's identity after appropriate conditioning.
d. Give some thought to what integrability conditions are needed for the covariance identity in part c.
5. (Bivariate normal distribution). Let $X=\left(X_{1}, X_{2}\right) \sim \mathcal{N}_{2}$ with

$$
\mathbb{E} X_{1}=\mu_{1}, \mathbb{E} X_{1}=\mu_{2}, \operatorname{Var}\left(X_{1}\right)=\sigma_{1}^{2}, \operatorname{Var}\left(X_{1}\right)=\sigma_{2}^{2}, \operatorname{Corr}\left(X_{1}, X_{2}\right)=\rho \in[-1,1]
$$

(a) Find $\mu=\mathbb{E} X$ and $\Sigma=\operatorname{Var}(X)$ in terms of the quantities above.
(b) Find the determinant of Σ and conclude that Σ is invertible if and only if $\rho \in(-1,1)$.
(c) Find Σ^{-1} when $\rho \in(-1,1)$.
(d) Write down the density $f(x)$ of X in the case $\rho \in(-1,1)$. Feel free to look up the general form of the density in a text-book, or online, and then plug in the values of μ and Σ^{-1} that you found above.
6. Let X, Y be non-negative random variables defined on the same probability space.
(a) Show that $\mathbb{E} X=\int_{0}^{\infty} \mathbb{P}(X>t) d t$. Hint: Use the identity $x=\int_{0}^{\infty} \mathbb{I}(x>t) d t$ in the integral for $\mathbb{E} X$.
(b) Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a function with $g(0)=0$ having a continuous, non-negative derivative $g^{\prime}(x)$. Argue that $g(x)$ is non-negative and use the proof from part (a) to show that $\mathbb{E} g(X)=\int_{0}^{\infty} \mathbb{P}(X>t) g^{\prime}(t) d t$
(c) (Optional.) Show that $\operatorname{Cov}(g(X), g(Y))=\int_{0}^{\infty} \int_{0}^{\infty} H(s, t) g^{\prime}(s) g^{\prime}(t) d s d t$ where

$$
H(s, t)=\mathbb{P}(X>s, Y>t)-\mathbb{P}(X>s) \mathbb{P}(Y>t)
$$

7. Let U, V, W be random variables. Carefully establish the following inequalities.
(a) $\mathbb{P}(|U+V|>a+b) \leq \mathbb{P}(|U|>a)+\mathbb{P}(|V|>b)$ for every $a, b \geq 0$.
(b) $\mathbb{P}(|U V|>a) \leq \mathbb{P}(|U|>a / b)+\mathbb{P}(|V|>b)$ for every $a, b>0$.
8. Let X_{1}, X_{2}, \ldots, X and Y_{1}, Y_{2}, \ldots, Y be d-dimensional random vectors defined on the same probability space such that $X_{n} \rightarrow X$ in probability and $Y_{n} \rightarrow Y$ in probability. Show that $\left(X_{n}+Y_{n}\right) \rightarrow(X+Y)$ in probability.
9. Let $A \subset \mathbb{R}^{d}$ be non-empty. Define the function $f: \mathbb{R}^{d} \rightarrow[0, \infty)$, representing the minimum distance from x to the set A, by

$$
f(x):=\inf _{y \in A}\|x-y\|
$$

Show that $f(x)$ is Lipschitz with constant 1, that is, $|f(x)-f(y)| \leq\|x-y\|$ for every $x, y \in \mathbb{R}^{d}$.

