STOR 655 Homework 1
 Final Version

1. Show that $(1+u / 3)^{3} \geq 1+u$ for every $u \geq 0$.
2. Let $h(u)=(1+u) \log (1+u)-u$. (This function appears in Bennett's exponential inequality for sums of independent, bounded random variables.)
(a) By considering the first few terms of Taylor expansion of the function $h(\cdot)$ around zero, show that for every $u \geq 0$

$$
h(u) \geq \frac{u^{2}}{2+2 u}
$$

(b) (Optional) Use calculus to establish the stronger bound that for every $u \geq 0$

$$
h(u) \geq \frac{u^{2}}{2+2 u / 3}
$$

3. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ and $\left\{b_{1}, \ldots, b_{n}\right\}$ be two sequences of numbers.
(a) Show that $\min \left\{a_{i}\right\}+\min \left\{b_{i}\right\} \leq \min \left\{a_{i}+b_{i}\right\} \leq \min \left\{a_{i}\right\}+\max \left\{b_{i}\right\}$
(b) Show that $-\min \left\{a_{i}\right\}=\max \left\{-a_{i}\right\}$ and $-\max \left\{a_{i}\right\}=\min \left\{-a_{i}\right\}$. Use these relations in conjunction with the results of part (a) to get a related chain of inequalities involving maxima.
(c) Show that $\max \left\{a_{i}\right\}-\max \left\{b_{i}\right\} \leq \max \left\{\left|a_{i}-b_{i}\right|\right\}$
4. Establish the following relations for random vectors X and Y of appropriate dimension.
(a) $\mathbb{E}(A X)=A \mathbb{E} X$
(b) $\operatorname{Var}(A X)=A \operatorname{Var}(X) A^{t}$
(c) $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)^{t}$
(d) $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+\operatorname{Cov}(X, Y)+\operatorname{Cov}(Y, X)$
(e) If X, Y are independent, then $\operatorname{Cov}(X, Y)=0$
5. Let $U \sim \mathcal{N}_{d}(\mu, \Sigma)$ and let $V=\Sigma^{1 / 2} Y+\mu$ where $Y \sim \mathcal{N}_{d}(0, I)$.
(a) Show that $\mathbb{E} U=\mathbb{E} V$ and that $\operatorname{Var}(U)=\operatorname{Var}(V)$.
(b) Fix $v \in \mathbb{R}^{d}$. Find the distributions of the random variables $v^{t} U$ and $v^{t} V$. Note that these distributions are the same.
6. Let $x=\left(x_{1}, \ldots, x_{d}\right)^{t} \in \mathbb{R}^{d}$ and let $\|x\|$ be the Euclidean $\left(\ell_{2}\right)$ norm of x. Show that for $1 \leq i \leq d$,

$$
\left|x_{i}\right| \leq\|x\| \leq\left|x_{1}\right|+\cdots+\left|x_{d}\right| .
$$

Use the inequalities to show that if $X \in \mathbb{R}^{d}$ is a random vector then $\mathbb{E}\|X\|<\infty$ if and only if $\mathbb{E}\left|X_{i}\right|<\infty$ for $1 \leq i \leq d$.
7. Give a simple example of random vectors $X, Y \in \mathbb{R}^{2}$ such that $\operatorname{Cov}(X, Y) \neq \operatorname{Cov}(Y, X)$.
8. Let $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$. Establish the identity

$$
\mathbb{E} \exp \left\{a X^{2}+b X\right\}=\frac{1}{\sqrt{1-2 a \sigma^{2}}} \exp \left\{\frac{\sigma^{2} b^{2}}{2\left(1-2 a \sigma^{2}\right)}\right\}
$$

Hint: Write the expectation as an integral. Combine terms in the exponent and complete the square. Remove the constant factor and perform a simple change of variables to evaluate the remaining integral.

